Matches in SemOpenAlex for { <https://semopenalex.org/work/W3109677595> ?p ?o ?g. }
- W3109677595 endingPage "241.e6" @default.
- W3109677595 startingPage "228" @default.
- W3109677595 abstract "•SBTub3 photocontrols microtubule dynamics, organization, and dependent processes •Microtubule photocontrol is cell and sub-cellularly precise and temporally reversible •SBT photocontrol is orthogonal to GFP/YFP imaging and SBTs are metabolically stable •The SBT scaffold is promising for photopharmaceuticals for other protein targets Optically controlled chemical reagents, termed “photopharmaceuticals,” are powerful tools for precise spatiotemporal control of proteins particularly when genetic methods, such as knockouts or optogenetics are not viable options. However, current photopharmaceutical scaffolds, such as azobenzenes are intolerant of GFP/YFP imaging and are metabolically labile, posing severe limitations for biological use. We rationally designed a photoswitchable SBT scaffold to overcome these problems, then derivatized it to create exceptionally metabolically robust and fully GFP/YFP-orthogonal SBTub photopharmaceutical tubulin inhibitors. Lead compound SBTub3 allows temporally reversible, cell-precise, and even subcellularly precise photomodulation of microtubule dynamics, organization, and microtubule-dependent processes. By overcoming the previous limitations of microtubule photopharmaceuticals, SBTubs offer powerful applications in cell biology, and their robustness and druglikeness are favorable for intracellular biological control in in vivo applications. We furthermore expect that the robustness and imaging orthogonality of the SBT scaffold will inspire other derivatizations directed at extending the photocontrol of a range of other biological targets. Optically controlled chemical reagents, termed “photopharmaceuticals,” are powerful tools for precise spatiotemporal control of proteins particularly when genetic methods, such as knockouts or optogenetics are not viable options. However, current photopharmaceutical scaffolds, such as azobenzenes are intolerant of GFP/YFP imaging and are metabolically labile, posing severe limitations for biological use. We rationally designed a photoswitchable SBT scaffold to overcome these problems, then derivatized it to create exceptionally metabolically robust and fully GFP/YFP-orthogonal SBTub photopharmaceutical tubulin inhibitors. Lead compound SBTub3 allows temporally reversible, cell-precise, and even subcellularly precise photomodulation of microtubule dynamics, organization, and microtubule-dependent processes. By overcoming the previous limitations of microtubule photopharmaceuticals, SBTubs offer powerful applications in cell biology, and their robustness and druglikeness are favorable for intracellular biological control in in vivo applications. We furthermore expect that the robustness and imaging orthogonality of the SBT scaffold will inspire other derivatizations directed at extending the photocontrol of a range of other biological targets." @default.
- W3109677595 created "2020-12-07" @default.
- W3109677595 creator A5000351848 @default.
- W3109677595 creator A5001210839 @default.
- W3109677595 creator A5002852262 @default.
- W3109677595 creator A5008464980 @default.
- W3109677595 creator A5008980753 @default.
- W3109677595 creator A5014723670 @default.
- W3109677595 creator A5015116702 @default.
- W3109677595 creator A5019567999 @default.
- W3109677595 creator A5021027875 @default.
- W3109677595 creator A5023142382 @default.
- W3109677595 creator A5025164063 @default.
- W3109677595 creator A5037762178 @default.
- W3109677595 creator A5039204846 @default.
- W3109677595 creator A5042671753 @default.
- W3109677595 creator A5076367212 @default.
- W3109677595 creator A5084828602 @default.
- W3109677595 creator A5085398715 @default.
- W3109677595 date "2021-02-01" @default.
- W3109677595 modified "2023-09-26" @default.
- W3109677595 title "A Robust, GFP-Orthogonal Photoswitchable Inhibitor Scaffold Extends Optical Control over the Microtubule Cytoskeleton" @default.
- W3109677595 cites W149540474 @default.
- W3109677595 cites W1500568564 @default.
- W3109677595 cites W1526729571 @default.
- W3109677595 cites W1546474542 @default.
- W3109677595 cites W1883565552 @default.
- W3109677595 cites W1987277299 @default.
- W3109677595 cites W1999871246 @default.
- W3109677595 cites W2002221267 @default.
- W3109677595 cites W2009483611 @default.
- W3109677595 cites W2031818488 @default.
- W3109677595 cites W2036048932 @default.
- W3109677595 cites W2038361589 @default.
- W3109677595 cites W2038492953 @default.
- W3109677595 cites W2041545978 @default.
- W3109677595 cites W2045232671 @default.
- W3109677595 cites W2057541896 @default.
- W3109677595 cites W2071201595 @default.
- W3109677595 cites W2076850291 @default.
- W3109677595 cites W2085501556 @default.
- W3109677595 cites W2095565245 @default.
- W3109677595 cites W2113144687 @default.
- W3109677595 cites W2120795306 @default.
- W3109677595 cites W2125160663 @default.
- W3109677595 cites W2144081223 @default.
- W3109677595 cites W2145516891 @default.
- W3109677595 cites W2147307619 @default.
- W3109677595 cites W2148734015 @default.
- W3109677595 cites W2159407190 @default.
- W3109677595 cites W2160030473 @default.
- W3109677595 cites W2167279371 @default.
- W3109677595 cites W2171379175 @default.
- W3109677595 cites W2180229411 @default.
- W3109677595 cites W2211826471 @default.
- W3109677595 cites W2293816282 @default.
- W3109677595 cites W2332203674 @default.
- W3109677595 cites W2395355399 @default.
- W3109677595 cites W2463040786 @default.
- W3109677595 cites W2520143271 @default.
- W3109677595 cites W2573197589 @default.
- W3109677595 cites W2621339407 @default.
- W3109677595 cites W2737296374 @default.
- W3109677595 cites W2753225598 @default.
- W3109677595 cites W2754993961 @default.
- W3109677595 cites W2774836366 @default.
- W3109677595 cites W2792361010 @default.
- W3109677595 cites W2794190413 @default.
- W3109677595 cites W2814854939 @default.
- W3109677595 cites W2892048355 @default.
- W3109677595 cites W2896529034 @default.
- W3109677595 cites W2908796130 @default.
- W3109677595 cites W2941312336 @default.
- W3109677595 cites W2947357552 @default.
- W3109677595 cites W2954162232 @default.
- W3109677595 cites W2977201403 @default.
- W3109677595 cites W3002262474 @default.
- W3109677595 cites W3004961971 @default.
- W3109677595 cites W3005618718 @default.
- W3109677595 cites W3008322752 @default.
- W3109677595 cites W3022840256 @default.
- W3109677595 cites W3023124296 @default.
- W3109677595 cites W3087649796 @default.
- W3109677595 cites W4248872320 @default.
- W3109677595 cites W4249878000 @default.
- W3109677595 doi "https://doi.org/10.1016/j.chembiol.2020.11.007" @default.
- W3109677595 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33275880" @default.
- W3109677595 hasPublicationYear "2021" @default.
- W3109677595 type Work @default.
- W3109677595 sameAs 3109677595 @default.
- W3109677595 citedByCount "37" @default.
- W3109677595 countsByYear W31096775952021 @default.
- W3109677595 countsByYear W31096775952022 @default.
- W3109677595 countsByYear W31096775952023 @default.
- W3109677595 crossrefType "journal-article" @default.
- W3109677595 hasAuthorship W3109677595A5000351848 @default.
- W3109677595 hasAuthorship W3109677595A5001210839 @default.
- W3109677595 hasAuthorship W3109677595A5002852262 @default.