Matches in SemOpenAlex for { <https://semopenalex.org/work/W3109696564> ?p ?o ?g. }
- W3109696564 abstract "Multiview learning is concerned with machine learning problems, where data are represented by distinct feature sets or views. Recently, this definition has been extended to accommodate sequential data, i.e., each view of the data is in the form of a sequence. Multiview sequential data pose major challenges for representation learning, including i) absence of sample correspondence information between the views , ii) complex relations among samples within each view , and iii) high complexity for handling multiple sequences . In this article, we first introduce a generalized deep learning model that can simultaneously discover sample correspondence and capture the cross-view relations among the data sequences. The model parameters can be optimized using a gradient descent-based algorithm. The complexity for computing the gradient is at most quadratic with respect to sequence lengths in terms of both computational time and space. Based on this model, we propose a second model by integrating the objective with reconstruction losses of autoencoders. This allows the second model to provide a better trade-off between view-specific and cross-view relations in the data. Finally, to handle multiple (more than two) data sequences, we develop a third model along with a convergence-guaranteed optimization algorithm. Extensive experiments on public datasets demonstrate the superior performances of our models over competing methods." @default.
- W3109696564 created "2020-12-07" @default.
- W3109696564 creator A5080535052 @default.
- W3109696564 creator A5087434029 @default.
- W3109696564 date "2020-01-01" @default.
- W3109696564 modified "2023-09-30" @default.
- W3109696564 title "Deep Multiview Learning From Sequentially Unaligned Data" @default.
- W3109696564 cites W1523385540 @default.
- W3109696564 cites W1836465849 @default.
- W3109696564 cites W1978119584 @default.
- W3109696564 cites W1978259121 @default.
- W3109696564 cites W2005895359 @default.
- W3109696564 cites W2016776918 @default.
- W3109696564 cites W2025341678 @default.
- W3109696564 cites W2061211758 @default.
- W3109696564 cites W2064675550 @default.
- W3109696564 cites W2080501585 @default.
- W3109696564 cites W2100235303 @default.
- W3109696564 cites W2112796928 @default.
- W3109696564 cites W2115252128 @default.
- W3109696564 cites W2119309919 @default.
- W3109696564 cites W2120112398 @default.
- W3109696564 cites W2120544738 @default.
- W3109696564 cites W2121045468 @default.
- W3109696564 cites W2123261262 @default.
- W3109696564 cites W2131828344 @default.
- W3109696564 cites W2132771435 @default.
- W3109696564 cites W2134560790 @default.
- W3109696564 cites W2140348479 @default.
- W3109696564 cites W2144564081 @default.
- W3109696564 cites W2146634731 @default.
- W3109696564 cites W2147800946 @default.
- W3109696564 cites W2150355110 @default.
- W3109696564 cites W2150696241 @default.
- W3109696564 cites W2151831732 @default.
- W3109696564 cites W2152758153 @default.
- W3109696564 cites W2153635508 @default.
- W3109696564 cites W2161634108 @default.
- W3109696564 cites W2165874743 @default.
- W3109696564 cites W2167732364 @default.
- W3109696564 cites W2169658215 @default.
- W3109696564 cites W2184188583 @default.
- W3109696564 cites W2187089797 @default.
- W3109696564 cites W2342749827 @default.
- W3109696564 cites W2406249259 @default.
- W3109696564 cites W2408716783 @default.
- W3109696564 cites W2475012103 @default.
- W3109696564 cites W2539917949 @default.
- W3109696564 cites W2551745161 @default.
- W3109696564 cites W2554185348 @default.
- W3109696564 cites W2623638694 @default.
- W3109696564 cites W2788835992 @default.
- W3109696564 cites W2804479877 @default.
- W3109696564 cites W2902746003 @default.
- W3109696564 cites W2923551166 @default.
- W3109696564 cites W2930012381 @default.
- W3109696564 cites W2950985889 @default.
- W3109696564 cites W2962914230 @default.
- W3109696564 cites W2963142938 @default.
- W3109696564 cites W2963405869 @default.
- W3109696564 cites W2963806310 @default.
- W3109696564 cites W2977824741 @default.
- W3109696564 cites W2989625567 @default.
- W3109696564 cites W3028642772 @default.
- W3109696564 cites W3090534973 @default.
- W3109696564 cites W3122774149 @default.
- W3109696564 cites W64698994 @default.
- W3109696564 doi "https://doi.org/10.1109/access.2020.3042217" @default.
- W3109696564 hasPublicationYear "2020" @default.
- W3109696564 type Work @default.
- W3109696564 sameAs 3109696564 @default.
- W3109696564 citedByCount "1" @default.
- W3109696564 countsByYear W31096965642022 @default.
- W3109696564 crossrefType "journal-article" @default.
- W3109696564 hasAuthorship W3109696564A5080535052 @default.
- W3109696564 hasAuthorship W3109696564A5087434029 @default.
- W3109696564 hasBestOaLocation W31096965641 @default.
- W3109696564 hasConcept C108583219 @default.
- W3109696564 hasConcept C154945302 @default.
- W3109696564 hasConcept C31972630 @default.
- W3109696564 hasConcept C41008148 @default.
- W3109696564 hasConceptScore W3109696564C108583219 @default.
- W3109696564 hasConceptScore W3109696564C154945302 @default.
- W3109696564 hasConceptScore W3109696564C31972630 @default.
- W3109696564 hasConceptScore W3109696564C41008148 @default.
- W3109696564 hasLocation W31096965641 @default.
- W3109696564 hasLocation W31096965642 @default.
- W3109696564 hasOpenAccess W3109696564 @default.
- W3109696564 hasPrimaryLocation W31096965641 @default.
- W3109696564 hasRelatedWork W1891287906 @default.
- W3109696564 hasRelatedWork W1969923398 @default.
- W3109696564 hasRelatedWork W2036807459 @default.
- W3109696564 hasRelatedWork W2229312674 @default.
- W3109696564 hasRelatedWork W2731899572 @default.
- W3109696564 hasRelatedWork W2755342338 @default.
- W3109696564 hasRelatedWork W2772917594 @default.
- W3109696564 hasRelatedWork W2939353110 @default.
- W3109696564 hasRelatedWork W3009238340 @default.
- W3109696564 hasRelatedWork W3215138031 @default.
- W3109696564 isParatext "false" @default.