Matches in SemOpenAlex for { <https://semopenalex.org/work/W3109702942> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W3109702942 abstract "Indonesia is a country with a very large population and a fairly high population growth. Population growth is one of the important indicators in demography that will affect the availability of food, land and employment. Hence, population growth data is very important to government when designing development policies. The fuzzy time series models have been widely used in previous studies to forecast enrollment data, stock exchanges and others. In this study, three types of fuzzy time series models were used namely Chen, Cheng, and Markov Chain models to predict the total population in Tanjugpinang city, Riau Islands Province. The models are compared based on error analysis, namely: Mean Average Percentage Error (MAPE) and Root Mean Square Error (RMSE) values. The results showed that Markov chain model yielded a very low MAPE, namely 0.0457%. The MAPE value for the Cheng model is 0.0535%, while the MAPE value for the Chen model as the reference model is 0.1428%. Based on the RMSE calculation, the Markov chain gives the best results with a value of 145, RMSE for Cheng 149 and the Chen model gives an RMSE value of 345. The best model obtained for population forecasting is the Markov chain as it has the smallest RMSE, and also the Markov chain model is the most accurate model in the used dataset based on the MAPE value." @default.
- W3109702942 created "2020-12-07" @default.
- W3109702942 creator A5006455569 @default.
- W3109702942 date "2020-10-06" @default.
- W3109702942 modified "2023-09-23" @default.
- W3109702942 title "Forecasting Total Population Using Chen, Cheng, and Markov Chain Fuzzy Time Series Models" @default.
- W3109702942 cites W1993503008 @default.
- W3109702942 cites W2040121225 @default.
- W3109702942 cites W2053612364 @default.
- W3109702942 cites W2055097068 @default.
- W3109702942 cites W2085752583 @default.
- W3109702942 cites W2133777675 @default.
- W3109702942 cites W2135985407 @default.
- W3109702942 cites W2157041604 @default.
- W3109702942 cites W2231549911 @default.
- W3109702942 cites W2582365220 @default.
- W3109702942 doi "https://doi.org/10.1109/icitee49829.2020.9271682" @default.
- W3109702942 hasPublicationYear "2020" @default.
- W3109702942 type Work @default.
- W3109702942 sameAs 3109702942 @default.
- W3109702942 citedByCount "0" @default.
- W3109702942 crossrefType "proceedings-article" @default.
- W3109702942 hasAuthorship W3109702942A5006455569 @default.
- W3109702942 hasConcept C105795698 @default.
- W3109702942 hasConcept C139945424 @default.
- W3109702942 hasConcept C144024400 @default.
- W3109702942 hasConcept C149782125 @default.
- W3109702942 hasConcept C149923435 @default.
- W3109702942 hasConcept C150217764 @default.
- W3109702942 hasConcept C151730666 @default.
- W3109702942 hasConcept C154945302 @default.
- W3109702942 hasConcept C163836022 @default.
- W3109702942 hasConcept C2776085556 @default.
- W3109702942 hasConcept C2908647359 @default.
- W3109702942 hasConcept C33923547 @default.
- W3109702942 hasConcept C41008148 @default.
- W3109702942 hasConcept C58166 @default.
- W3109702942 hasConcept C86803240 @default.
- W3109702942 hasConcept C98763669 @default.
- W3109702942 hasConceptScore W3109702942C105795698 @default.
- W3109702942 hasConceptScore W3109702942C139945424 @default.
- W3109702942 hasConceptScore W3109702942C144024400 @default.
- W3109702942 hasConceptScore W3109702942C149782125 @default.
- W3109702942 hasConceptScore W3109702942C149923435 @default.
- W3109702942 hasConceptScore W3109702942C150217764 @default.
- W3109702942 hasConceptScore W3109702942C151730666 @default.
- W3109702942 hasConceptScore W3109702942C154945302 @default.
- W3109702942 hasConceptScore W3109702942C163836022 @default.
- W3109702942 hasConceptScore W3109702942C2776085556 @default.
- W3109702942 hasConceptScore W3109702942C2908647359 @default.
- W3109702942 hasConceptScore W3109702942C33923547 @default.
- W3109702942 hasConceptScore W3109702942C41008148 @default.
- W3109702942 hasConceptScore W3109702942C58166 @default.
- W3109702942 hasConceptScore W3109702942C86803240 @default.
- W3109702942 hasConceptScore W3109702942C98763669 @default.
- W3109702942 hasLocation W31097029421 @default.
- W3109702942 hasOpenAccess W3109702942 @default.
- W3109702942 hasPrimaryLocation W31097029421 @default.
- W3109702942 hasRelatedWork W12618199 @default.
- W3109702942 hasRelatedWork W27060432 @default.
- W3109702942 hasRelatedWork W28076129 @default.
- W3109702942 hasRelatedWork W33022928 @default.
- W3109702942 hasRelatedWork W3399313 @default.
- W3109702942 hasRelatedWork W35370810 @default.
- W3109702942 hasRelatedWork W36039830 @default.
- W3109702942 hasRelatedWork W37247988 @default.
- W3109702942 hasRelatedWork W8311419 @default.
- W3109702942 hasRelatedWork W9864195 @default.
- W3109702942 isParatext "false" @default.
- W3109702942 isRetracted "false" @default.
- W3109702942 magId "3109702942" @default.
- W3109702942 workType "article" @default.