Matches in SemOpenAlex for { <https://semopenalex.org/work/W3109735136> ?p ?o ?g. }
- W3109735136 endingPage "270" @default.
- W3109735136 startingPage "261" @default.
- W3109735136 abstract "The importance of and interest to research and investigations of atmospheric composition and its modeling for different applications are substantially increased. Air quality forecast (AQF) and assessment systems help decision makers to improve air quality and public health, mitigate the occurrence of acute air pollution episodes, particularly in urban areas, and reduce the associated impacts on agriculture, ecosystems and climate. Advanced approaches in AQF combine an ensemble of state-of-the-art models, high-resolution emission inventories, satellite observations, and surface measurements of most relevant chemical species to provide hindcasts, analyses, and forecasts from global to regional air pollution and downscaling for selected countries, regions, and urban areas. Based on published reviews and recent analyses, the article discusses main gaps, challenges, applications and advances, main trends and research needs in further advancements of atmospheric composition and air quality modeling and forecasting." @default.
- W3109735136 created "2020-12-07" @default.
- W3109735136 creator A5022712902 @default.
- W3109735136 creator A5022802322 @default.
- W3109735136 date "2020-01-01" @default.
- W3109735136 modified "2023-10-18" @default.
- W3109735136 title "Advances in air quality modeling and forecasting" @default.
- W3109735136 cites W1865848715 @default.
- W3109735136 cites W1966683747 @default.
- W3109735136 cites W1968163205 @default.
- W3109735136 cites W1969637693 @default.
- W3109735136 cites W1974767211 @default.
- W3109735136 cites W1981545676 @default.
- W3109735136 cites W1993429157 @default.
- W3109735136 cites W1997829466 @default.
- W3109735136 cites W1999752910 @default.
- W3109735136 cites W2000809920 @default.
- W3109735136 cites W2003831290 @default.
- W3109735136 cites W2016703826 @default.
- W3109735136 cites W2019010037 @default.
- W3109735136 cites W2035062737 @default.
- W3109735136 cites W2039780599 @default.
- W3109735136 cites W2040398254 @default.
- W3109735136 cites W2042072913 @default.
- W3109735136 cites W2044061235 @default.
- W3109735136 cites W2050430404 @default.
- W3109735136 cites W2052484519 @default.
- W3109735136 cites W2064873089 @default.
- W3109735136 cites W2068726711 @default.
- W3109735136 cites W2070261558 @default.
- W3109735136 cites W2071032173 @default.
- W3109735136 cites W2074537813 @default.
- W3109735136 cites W2090121038 @default.
- W3109735136 cites W2095036401 @default.
- W3109735136 cites W2099310231 @default.
- W3109735136 cites W2107319550 @default.
- W3109735136 cites W2113324856 @default.
- W3109735136 cites W2119489162 @default.
- W3109735136 cites W2121690346 @default.
- W3109735136 cites W2121969447 @default.
- W3109735136 cites W2129605485 @default.
- W3109735136 cites W2137664388 @default.
- W3109735136 cites W2151550745 @default.
- W3109735136 cites W2154701030 @default.
- W3109735136 cites W2156844335 @default.
- W3109735136 cites W2157539394 @default.
- W3109735136 cites W2161987407 @default.
- W3109735136 cites W2163789416 @default.
- W3109735136 cites W2167667183 @default.
- W3109735136 cites W2218060600 @default.
- W3109735136 cites W2286488568 @default.
- W3109735136 cites W2471266319 @default.
- W3109735136 cites W2476889144 @default.
- W3109735136 cites W2511997790 @default.
- W3109735136 cites W2546325081 @default.
- W3109735136 cites W2564173216 @default.
- W3109735136 cites W2570232621 @default.
- W3109735136 cites W2610650693 @default.
- W3109735136 cites W2617591651 @default.
- W3109735136 cites W2781654793 @default.
- W3109735136 cites W2785793262 @default.
- W3109735136 cites W2788215801 @default.
- W3109735136 cites W2793325218 @default.
- W3109735136 cites W2799476458 @default.
- W3109735136 cites W2823724833 @default.
- W3109735136 cites W2884883307 @default.
- W3109735136 cites W2894963581 @default.
- W3109735136 cites W2917306872 @default.
- W3109735136 cites W2990189372 @default.
- W3109735136 cites W2992855954 @default.
- W3109735136 cites W3036580602 @default.
- W3109735136 cites W3091353810 @default.
- W3109735136 cites W4254953959 @default.
- W3109735136 doi "https://doi.org/10.1016/j.glt.2020.11.001" @default.
- W3109735136 hasPublicationYear "2020" @default.
- W3109735136 type Work @default.
- W3109735136 sameAs 3109735136 @default.
- W3109735136 citedByCount "44" @default.
- W3109735136 countsByYear W31097351362021 @default.
- W3109735136 countsByYear W31097351362022 @default.
- W3109735136 countsByYear W31097351362023 @default.
- W3109735136 crossrefType "journal-article" @default.
- W3109735136 hasAuthorship W3109735136A5022712902 @default.
- W3109735136 hasAuthorship W3109735136A5022802322 @default.
- W3109735136 hasBestOaLocation W31097351361 @default.
- W3109735136 hasConcept C107054158 @default.
- W3109735136 hasConcept C107826830 @default.
- W3109735136 hasConcept C111472728 @default.
- W3109735136 hasConcept C126314574 @default.
- W3109735136 hasConcept C132651083 @default.
- W3109735136 hasConcept C138885662 @default.
- W3109735136 hasConcept C153294291 @default.
- W3109735136 hasConcept C162324750 @default.
- W3109735136 hasConcept C178790620 @default.
- W3109735136 hasConcept C185592680 @default.
- W3109735136 hasConcept C18903297 @default.
- W3109735136 hasConcept C205649164 @default.
- W3109735136 hasConcept C2779530757 @default.