Matches in SemOpenAlex for { <https://semopenalex.org/work/W3109746265> ?p ?o ?g. }
Showing items 1 to 48 of
48
with 100 items per page.
- W3109746265 abstract "Disinformation is often presented in long textual articles, especially when it relates to domains such as health, often seen in relation to COVID-19. These articles are typically observed to have a number of trustworthy sentences among which core disinformation sentences are scattered. In this paper, we propose a novel unsupervised task of identifying sentences containing key disinformation within a document that is known to be untrustworthy. We design a three-phase statistical NLP solution for the task which starts with embedding sentences within a bespoke feature space designed for the task. Sentences represented using those features are then clustered, following which the key sentences are identified through proximity scoring. We also curate a new dataset with sentence level disinformation scorings to aid evaluation for this task; the dataset is being made publicly available to facilitate further research. Based on a comprehensive empirical evaluation against techniques from related tasks such as claim detection and summarization, as well as against simplified variants of our proposed approach, we illustrate that our method is able to identify core disinformation effectively." @default.
- W3109746265 created "2020-12-07" @default.
- W3109746265 creator A5012482178 @default.
- W3109746265 creator A5047048537 @default.
- W3109746265 creator A5077675515 @default.
- W3109746265 date "2020-11-30" @default.
- W3109746265 modified "2023-10-07" @default.
- W3109746265 title "ReSCo-CC" @default.
- W3109746265 cites W1532503642 @default.
- W3109746265 cites W2071949631 @default.
- W3109746265 cites W2250293237 @default.
- W3109746265 cites W2251214593 @default.
- W3109746265 cites W2337875011 @default.
- W3109746265 cites W2743800013 @default.
- W3109746265 cites W2751368487 @default.
- W3109746265 cites W2757369719 @default.
- W3109746265 cites W2783564496 @default.
- W3109746265 cites W3036963250 @default.
- W3109746265 doi "https://doi.org/10.1145/3428757.3429107" @default.
- W3109746265 hasPublicationYear "2020" @default.
- W3109746265 type Work @default.
- W3109746265 sameAs 3109746265 @default.
- W3109746265 citedByCount "0" @default.
- W3109746265 crossrefType "proceedings-article" @default.
- W3109746265 hasAuthorship W3109746265A5012482178 @default.
- W3109746265 hasAuthorship W3109746265A5047048537 @default.
- W3109746265 hasAuthorship W3109746265A5077675515 @default.
- W3109746265 hasBestOaLocation W31097462652 @default.
- W3109746265 hasConcept C41008148 @default.
- W3109746265 hasConceptScore W3109746265C41008148 @default.
- W3109746265 hasLocation W31097462651 @default.
- W3109746265 hasLocation W31097462652 @default.
- W3109746265 hasOpenAccess W3109746265 @default.
- W3109746265 hasPrimaryLocation W31097462651 @default.
- W3109746265 hasRelatedWork W2093578348 @default.
- W3109746265 hasRelatedWork W2350741829 @default.
- W3109746265 hasRelatedWork W2358668433 @default.
- W3109746265 hasRelatedWork W2376932109 @default.
- W3109746265 hasRelatedWork W2382290278 @default.
- W3109746265 hasRelatedWork W2390279801 @default.
- W3109746265 hasRelatedWork W2748952813 @default.
- W3109746265 hasRelatedWork W2766271392 @default.
- W3109746265 hasRelatedWork W2899084033 @default.
- W3109746265 hasRelatedWork W3004735627 @default.
- W3109746265 isParatext "false" @default.
- W3109746265 isRetracted "false" @default.
- W3109746265 magId "3109746265" @default.
- W3109746265 workType "article" @default.