Matches in SemOpenAlex for { <https://semopenalex.org/work/W3109834438> ?p ?o ?g. }
- W3109834438 endingPage "3813" @default.
- W3109834438 startingPage "3813" @default.
- W3109834438 abstract "An accurate forecast of fine particulate matter (PM2.5) concentration in the forthcoming days is crucial since it can be used as an early warning for the prevention of general public from hazardous PM2.5 pollution events. Though the European Copernicus Atmosphere Monitoring Service (CAMS) provides global PM2.5 forecasts up to the next 120 h at a 3 h time interval, the data accuracy of this product had not been well evaluated. By using hourly PM2.5 concentration data that were sampled in China and United States (US) between 2017 and 2018, the data accuracy and bias levels of CAMS PM2.5 concentration forecast over these two countries were examined. Ground-based validation results indicate a relatively low accuracy of raw PM2.5 forecasts given the presence of large and spatially varied modeling biases, especially in northwest China and the western United States. Specifically, the PM2.5 forecasts in China showed a mean correlation value ranging 0.31–0.45 (0.24–0.42 in US) and RMSE of 38–83 (8.30–16.76 in US) μg/m3, as the forecasting time horizons increased from 3 h to 120 h. Additionally, the data accuracy was found to not only decrease with the increase of forecasting time horizons but also exhibit an evident diurnal cycle. This implies the current CAMS forecasting model failed to resolve the local processes that modulate the diurnal variability of PM2.5. Moreover, the data accuracy varied between seasons, as accurate PM2.5 forecasts were more likely to be derived in the autumn in China, whereas these were more likely in spring in the US. To improve the data accuracy of the raw PM2.5 forecasts, a statistical bias correction model was then established using the random forest method to account for large modeling biases. The cross-validation results clearly demonstrated the effectiveness and benefits of the proposed bias correction model, as the diurnal varied and temporally increasing modeling biases were substantially reduced after the calibration. Overall, the calibrated CAMS PM2.5 forecasts could be used as a promising data source to prevent general public from severe PM2.5 pollution events given the improved data accuracy." @default.
- W3109834438 created "2020-12-07" @default.
- W3109834438 creator A5004387574 @default.
- W3109834438 creator A5042951049 @default.
- W3109834438 creator A5072507335 @default.
- W3109834438 date "2020-11-20" @default.
- W3109834438 modified "2023-10-02" @default.
- W3109834438 title "Validation and Calibration of CAMS PM2.5 Forecasts Using In Situ PM2.5 Measurements in China and United States" @default.
- W3109834438 cites W1517984787 @default.
- W3109834438 cites W1711767104 @default.
- W3109834438 cites W1907369419 @default.
- W3109834438 cites W1968840994 @default.
- W3109834438 cites W1970047006 @default.
- W3109834438 cites W1980891198 @default.
- W3109834438 cites W1981719480 @default.
- W3109834438 cites W2009279813 @default.
- W3109834438 cites W2014926829 @default.
- W3109834438 cites W2038707259 @default.
- W3109834438 cites W2045782642 @default.
- W3109834438 cites W2075924373 @default.
- W3109834438 cites W2076132436 @default.
- W3109834438 cites W2083944525 @default.
- W3109834438 cites W2103977502 @default.
- W3109834438 cites W2122129901 @default.
- W3109834438 cites W2133063676 @default.
- W3109834438 cites W2133484165 @default.
- W3109834438 cites W2141970008 @default.
- W3109834438 cites W2148099625 @default.
- W3109834438 cites W2151695040 @default.
- W3109834438 cites W2166525661 @default.
- W3109834438 cites W2316167246 @default.
- W3109834438 cites W2321069189 @default.
- W3109834438 cites W2328503207 @default.
- W3109834438 cites W2336797181 @default.
- W3109834438 cites W2440545289 @default.
- W3109834438 cites W2553429315 @default.
- W3109834438 cites W2605508894 @default.
- W3109834438 cites W2622390982 @default.
- W3109834438 cites W2625129035 @default.
- W3109834438 cites W2742946820 @default.
- W3109834438 cites W2750349680 @default.
- W3109834438 cites W2766635578 @default.
- W3109834438 cites W2781683047 @default.
- W3109834438 cites W2791451833 @default.
- W3109834438 cites W2792794158 @default.
- W3109834438 cites W2799476458 @default.
- W3109834438 cites W2896333815 @default.
- W3109834438 cites W2899358379 @default.
- W3109834438 cites W2904671025 @default.
- W3109834438 cites W2908201380 @default.
- W3109834438 cites W2911672151 @default.
- W3109834438 cites W2914487400 @default.
- W3109834438 cites W2917616628 @default.
- W3109834438 cites W2943638903 @default.
- W3109834438 cites W2953978338 @default.
- W3109834438 cites W2954013437 @default.
- W3109834438 cites W2967819411 @default.
- W3109834438 cites W2970645661 @default.
- W3109834438 cites W2972397664 @default.
- W3109834438 cites W2981441128 @default.
- W3109834438 cites W2989529650 @default.
- W3109834438 cites W2989751705 @default.
- W3109834438 cites W2996193080 @default.
- W3109834438 cites W3005704948 @default.
- W3109834438 cites W3006093240 @default.
- W3109834438 cites W3028111194 @default.
- W3109834438 cites W3038108672 @default.
- W3109834438 cites W3042302995 @default.
- W3109834438 cites W3091063092 @default.
- W3109834438 cites W3105234146 @default.
- W3109834438 doi "https://doi.org/10.3390/rs12223813" @default.
- W3109834438 hasPublicationYear "2020" @default.
- W3109834438 type Work @default.
- W3109834438 sameAs 3109834438 @default.
- W3109834438 citedByCount "11" @default.
- W3109834438 countsByYear W31098344382021 @default.
- W3109834438 countsByYear W31098344382022 @default.
- W3109834438 countsByYear W31098344382023 @default.
- W3109834438 crossrefType "journal-article" @default.
- W3109834438 hasAuthorship W3109834438A5004387574 @default.
- W3109834438 hasAuthorship W3109834438A5042951049 @default.
- W3109834438 hasAuthorship W3109834438A5072507335 @default.
- W3109834438 hasBestOaLocation W31098344381 @default.
- W3109834438 hasConcept C105795698 @default.
- W3109834438 hasConcept C127313418 @default.
- W3109834438 hasConcept C132964779 @default.
- W3109834438 hasConcept C149782125 @default.
- W3109834438 hasConcept C153294291 @default.
- W3109834438 hasConcept C165838908 @default.
- W3109834438 hasConcept C166957645 @default.
- W3109834438 hasConcept C191935318 @default.
- W3109834438 hasConcept C205649164 @default.
- W3109834438 hasConcept C24552861 @default.
- W3109834438 hasConcept C29825287 @default.
- W3109834438 hasConcept C33923547 @default.
- W3109834438 hasConcept C39432304 @default.
- W3109834438 hasConcept C41008148 @default.
- W3109834438 hasConcept C49204034 @default.