Matches in SemOpenAlex for { <https://semopenalex.org/work/W3109916648> ?p ?o ?g. }
- W3109916648 endingPage "114843" @default.
- W3109916648 startingPage "114843" @default.
- W3109916648 abstract "Thermophysical properties of hybrid nanofluids remarkably affect their behavior in engineering systems. Among these properties, dynamic viscosity and thermal conductivity are more crucial in thermal sciences. In recent years, several models have been introduced based on intelligence methods for predicting these properties of the hybrid nanofluids. Confidence and accuracy of these models are influenced by the modeling algorithm used, the data implemented to train the model, the input parameters that are considered, etc. In the present review article, models created by several different machine learning approaches are comprehensively reviewed. According to the studies conducted in this field so far, it is concluded that artificial neural network is a very attractive approach for modeling both dynamic viscosity and thermal conductivity. The performance of these ANN-based methods can be modified by applying appropriate optimization approaches in order to find their optimum architecture design which minimize error margins. In addition to available correlations and implementation of ANNs, other intelligent approaches such as support vector machine and adaptive neuro fuzzy interface system are also applicable for accurate modeling of rheological properties of hybrid nanofluids." @default.
- W3109916648 created "2020-12-07" @default.
- W3109916648 creator A5030686353 @default.
- W3109916648 creator A5033243781 @default.
- W3109916648 creator A5035759479 @default.
- W3109916648 date "2021-01-01" @default.
- W3109916648 modified "2023-10-15" @default.
- W3109916648 title "Machine learning-based approaches for modeling thermophysical properties of hybrid nanofluids: A comprehensive review" @default.
- W3109916648 cites W1819871327 @default.
- W3109916648 cites W2003756933 @default.
- W3109916648 cites W2019207321 @default.
- W3109916648 cites W2043449394 @default.
- W3109916648 cites W2044136864 @default.
- W3109916648 cites W2059927105 @default.
- W3109916648 cites W2060324796 @default.
- W3109916648 cites W2085893083 @default.
- W3109916648 cites W2120879667 @default.
- W3109916648 cites W2151388232 @default.
- W3109916648 cites W2314108178 @default.
- W3109916648 cites W2343402427 @default.
- W3109916648 cites W2381793480 @default.
- W3109916648 cites W2396111381 @default.
- W3109916648 cites W2494956334 @default.
- W3109916648 cites W2531334171 @default.
- W3109916648 cites W2535284925 @default.
- W3109916648 cites W2576362466 @default.
- W3109916648 cites W2586350318 @default.
- W3109916648 cites W2594689350 @default.
- W3109916648 cites W2598241419 @default.
- W3109916648 cites W2614985478 @default.
- W3109916648 cites W2626025892 @default.
- W3109916648 cites W2628080790 @default.
- W3109916648 cites W2748881134 @default.
- W3109916648 cites W2755863423 @default.
- W3109916648 cites W2758429672 @default.
- W3109916648 cites W2802405819 @default.
- W3109916648 cites W2807437968 @default.
- W3109916648 cites W2808839648 @default.
- W3109916648 cites W2881195812 @default.
- W3109916648 cites W2884881300 @default.
- W3109916648 cites W2886399050 @default.
- W3109916648 cites W2887131464 @default.
- W3109916648 cites W2889731830 @default.
- W3109916648 cites W2896622584 @default.
- W3109916648 cites W2896785214 @default.
- W3109916648 cites W2897370130 @default.
- W3109916648 cites W2900489408 @default.
- W3109916648 cites W2903204664 @default.
- W3109916648 cites W2903991298 @default.
- W3109916648 cites W2904402301 @default.
- W3109916648 cites W2905780621 @default.
- W3109916648 cites W2908918277 @default.
- W3109916648 cites W2914856556 @default.
- W3109916648 cites W2929852282 @default.
- W3109916648 cites W2935444557 @default.
- W3109916648 cites W2944756403 @default.
- W3109916648 cites W2963056712 @default.
- W3109916648 cites W2968606620 @default.
- W3109916648 cites W2969283312 @default.
- W3109916648 cites W2970261355 @default.
- W3109916648 cites W2973780358 @default.
- W3109916648 cites W2974980961 @default.
- W3109916648 cites W2976706022 @default.
- W3109916648 cites W2985491024 @default.
- W3109916648 cites W2990253696 @default.
- W3109916648 cites W2994148135 @default.
- W3109916648 cites W2994991673 @default.
- W3109916648 cites W2995893002 @default.
- W3109916648 cites W2998753605 @default.
- W3109916648 cites W2999857370 @default.
- W3109916648 cites W3000800182 @default.
- W3109916648 cites W3004566969 @default.
- W3109916648 cites W3014367562 @default.
- W3109916648 cites W3014446153 @default.
- W3109916648 cites W3017196622 @default.
- W3109916648 cites W3045036291 @default.
- W3109916648 cites W3047878299 @default.
- W3109916648 doi "https://doi.org/10.1016/j.molliq.2020.114843" @default.
- W3109916648 hasPublicationYear "2021" @default.
- W3109916648 type Work @default.
- W3109916648 sameAs 3109916648 @default.
- W3109916648 citedByCount "41" @default.
- W3109916648 countsByYear W31099166482021 @default.
- W3109916648 countsByYear W31099166482022 @default.
- W3109916648 countsByYear W31099166482023 @default.
- W3109916648 crossrefType "journal-article" @default.
- W3109916648 hasAuthorship W3109916648A5030686353 @default.
- W3109916648 hasAuthorship W3109916648A5033243781 @default.
- W3109916648 hasAuthorship W3109916648A5035759479 @default.
- W3109916648 hasConcept C105795698 @default.
- W3109916648 hasConcept C119857082 @default.
- W3109916648 hasConcept C121332964 @default.
- W3109916648 hasConcept C12267149 @default.
- W3109916648 hasConcept C127172972 @default.
- W3109916648 hasConcept C154945302 @default.
- W3109916648 hasConcept C159985019 @default.
- W3109916648 hasConcept C192562407 @default.
- W3109916648 hasConcept C204530211 @default.