Matches in SemOpenAlex for { <https://semopenalex.org/work/W3109923889> ?p ?o ?g. }
- W3109923889 endingPage "283" @default.
- W3109923889 startingPage "266" @default.
- W3109923889 abstract "Image landmark detection aims to automatically identify the locations of predefined fiducial points. Despite recent success in this field, higher-ordered structural modeling to capture implicit or explicit relationships among anatomical landmarks has not been adequately exploited. In this work, we present a new topology-adapting deep graph learning approach for accurate anatomical facial and medical (e.g., hand, pelvis) landmark detection. The proposed method constructs graph signals leveraging both local image features and global shape features. The adaptive graph topology naturally explores and lands on task-specific structures which are learned end-to-end with two Graph Convolutional Networks (GCNs). Extensive experiments are conducted on three public facial image datasets (WFLW, 300W, and COFW-68) as well as three real-world X-ray medical datasets (Cephalometric (public), Hand and Pelvis). Quantitative results comparing with the previous state-of-the-art approaches across all studied datasets indicating the superior performance in both robustness and accuracy. Qualitative visualizations of the learned graph topologies demonstrate a physically plausible connectivity laying behind the landmarks." @default.
- W3109923889 created "2020-12-07" @default.
- W3109923889 creator A5002653628 @default.
- W3109923889 creator A5016038454 @default.
- W3109923889 creator A5021557615 @default.
- W3109923889 creator A5032017736 @default.
- W3109923889 creator A5032323678 @default.
- W3109923889 creator A5033333512 @default.
- W3109923889 creator A5037136476 @default.
- W3109923889 creator A5045227579 @default.
- W3109923889 creator A5055469774 @default.
- W3109923889 creator A5079448044 @default.
- W3109923889 creator A5079523076 @default.
- W3109923889 date "2020-01-01" @default.
- W3109923889 modified "2023-10-05" @default.
- W3109923889 title "Structured Landmark Detection via Topology-Adapting Deep Graph Learning" @default.
- W3109923889 cites W1795776638 @default.
- W3109923889 cites W1815894389 @default.
- W3109923889 cites W1976948919 @default.
- W3109923889 cites W1977821862 @default.
- W3109923889 cites W1990937109 @default.
- W3109923889 cites W1998294030 @default.
- W3109923889 cites W2009621568 @default.
- W3109923889 cites W2014322185 @default.
- W3109923889 cites W2038952578 @default.
- W3109923889 cites W2058961190 @default.
- W3109923889 cites W2073039128 @default.
- W3109923889 cites W2101866605 @default.
- W3109923889 cites W2102512156 @default.
- W3109923889 cites W2111372597 @default.
- W3109923889 cites W2113325037 @default.
- W3109923889 cites W2152826865 @default.
- W3109923889 cites W2153169342 @default.
- W3109923889 cites W2157149292 @default.
- W3109923889 cites W2157285372 @default.
- W3109923889 cites W2166694921 @default.
- W3109923889 cites W2194775991 @default.
- W3109923889 cites W2219124274 @default.
- W3109923889 cites W2221735899 @default.
- W3109923889 cites W2307770531 @default.
- W3109923889 cites W2345283274 @default.
- W3109923889 cites W2474575620 @default.
- W3109923889 cites W2511502099 @default.
- W3109923889 cites W2525974879 @default.
- W3109923889 cites W2544981553 @default.
- W3109923889 cites W2569670712 @default.
- W3109923889 cites W2736671157 @default.
- W3109923889 cites W2740020909 @default.
- W3109923889 cites W2770121394 @default.
- W3109923889 cites W2798730128 @default.
- W3109923889 cites W2799930024 @default.
- W3109923889 cites W2887748972 @default.
- W3109923889 cites W2897558462 @default.
- W3109923889 cites W2916798096 @default.
- W3109923889 cites W2925288829 @default.
- W3109923889 cites W2944892540 @default.
- W3109923889 cites W2952074561 @default.
- W3109923889 cites W2954388973 @default.
- W3109923889 cites W2962887041 @default.
- W3109923889 cites W2962890819 @default.
- W3109923889 cites W2962925415 @default.
- W3109923889 cites W2963544187 @default.
- W3109923889 cites W2963583792 @default.
- W3109923889 cites W2963789946 @default.
- W3109923889 cites W2963902384 @default.
- W3109923889 cites W2964014798 @default.
- W3109923889 cites W2964145484 @default.
- W3109923889 cites W2964304707 @default.
- W3109923889 cites W2964571041 @default.
- W3109923889 cites W2979306609 @default.
- W3109923889 cites W2979394918 @default.
- W3109923889 cites W2981725829 @default.
- W3109923889 cites W2982772166 @default.
- W3109923889 cites W2985243484 @default.
- W3109923889 cites W2990045899 @default.
- W3109923889 cites W3034384783 @default.
- W3109923889 cites W3098612954 @default.
- W3109923889 cites W3101707147 @default.
- W3109923889 cites W3102288316 @default.
- W3109923889 cites W3108907323 @default.
- W3109923889 cites W4252521223 @default.
- W3109923889 doi "https://doi.org/10.1007/978-3-030-58545-7_16" @default.
- W3109923889 hasPublicationYear "2020" @default.
- W3109923889 type Work @default.
- W3109923889 sameAs 3109923889 @default.
- W3109923889 citedByCount "50" @default.
- W3109923889 countsByYear W31099238892020 @default.
- W3109923889 countsByYear W31099238892021 @default.
- W3109923889 countsByYear W31099238892022 @default.
- W3109923889 countsByYear W31099238892023 @default.
- W3109923889 crossrefType "book-chapter" @default.
- W3109923889 hasAuthorship W3109923889A5002653628 @default.
- W3109923889 hasAuthorship W3109923889A5016038454 @default.
- W3109923889 hasAuthorship W3109923889A5021557615 @default.
- W3109923889 hasAuthorship W3109923889A5032017736 @default.
- W3109923889 hasAuthorship W3109923889A5032323678 @default.
- W3109923889 hasAuthorship W3109923889A5033333512 @default.
- W3109923889 hasAuthorship W3109923889A5037136476 @default.