Matches in SemOpenAlex for { <https://semopenalex.org/work/W3109925560> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W3109925560 abstract "Three-dimensional (3D) laser scanning is widely used to acquire the structural information of a target as a point cloud and reconstruct its shape. Recently, deep learning has shown good performance for 3D point cloud shape classification. The preprocessing of the point cloud is a primary step of deep learning. This study presents the performance of 3D shape classification via PointNet with a point cloud dataset, ModelNet40, with respect to three preprocessing cases: Random, zero mean, and normalization. The minimum and maximum values of the point cloud are compared according to the preprocessing method. In training, the number of points as an input was 1024. In addition, the influence of two augmentation methods (i.e., resampling and zero filling) was investigated. For this, the number of points was increased to 2048. Of the 2048 points, 1024 points were used the same as in the previous experiment, while the remaining 1024 points were added by resampling or zero filling. The results show that the zero mean method is effective for deep learning and normalization is better, whereas increasing the input size with the resampling or zero filling rather degrades the performance and increases unnecessary training costs." @default.
- W3109925560 created "2020-12-07" @default.
- W3109925560 creator A5032288145 @default.
- W3109925560 creator A5040511774 @default.
- W3109925560 date "2020-10-13" @default.
- W3109925560 modified "2023-10-15" @default.
- W3109925560 title "Influence of Preprocessing and Augmentation on 3D Point Cloud Classification Based on a Deep Neural Network: PointNet" @default.
- W3109925560 cites W2027906823 @default.
- W3109925560 cites W2098659773 @default.
- W3109925560 cites W2410716896 @default.
- W3109925560 cites W2687225434 @default.
- W3109925560 cites W2966702270 @default.
- W3109925560 cites W2973214609 @default.
- W3109925560 cites W2973322828 @default.
- W3109925560 cites W2980452063 @default.
- W3109925560 cites W3007809903 @default.
- W3109925560 cites W3008642638 @default.
- W3109925560 cites W3013918271 @default.
- W3109925560 cites W3021760293 @default.
- W3109925560 doi "https://doi.org/10.23919/iccas50221.2020.9268197" @default.
- W3109925560 hasPublicationYear "2020" @default.
- W3109925560 type Work @default.
- W3109925560 sameAs 3109925560 @default.
- W3109925560 citedByCount "1" @default.
- W3109925560 countsByYear W31099255602022 @default.
- W3109925560 crossrefType "proceedings-article" @default.
- W3109925560 hasAuthorship W3109925560A5032288145 @default.
- W3109925560 hasAuthorship W3109925560A5040511774 @default.
- W3109925560 hasConcept C10551718 @default.
- W3109925560 hasConcept C108583219 @default.
- W3109925560 hasConcept C111919701 @default.
- W3109925560 hasConcept C124101348 @default.
- W3109925560 hasConcept C131979681 @default.
- W3109925560 hasConcept C153180895 @default.
- W3109925560 hasConcept C154945302 @default.
- W3109925560 hasConcept C2984842247 @default.
- W3109925560 hasConcept C34736171 @default.
- W3109925560 hasConcept C41008148 @default.
- W3109925560 hasConcept C50644808 @default.
- W3109925560 hasConcept C79974875 @default.
- W3109925560 hasConceptScore W3109925560C10551718 @default.
- W3109925560 hasConceptScore W3109925560C108583219 @default.
- W3109925560 hasConceptScore W3109925560C111919701 @default.
- W3109925560 hasConceptScore W3109925560C124101348 @default.
- W3109925560 hasConceptScore W3109925560C131979681 @default.
- W3109925560 hasConceptScore W3109925560C153180895 @default.
- W3109925560 hasConceptScore W3109925560C154945302 @default.
- W3109925560 hasConceptScore W3109925560C2984842247 @default.
- W3109925560 hasConceptScore W3109925560C34736171 @default.
- W3109925560 hasConceptScore W3109925560C41008148 @default.
- W3109925560 hasConceptScore W3109925560C50644808 @default.
- W3109925560 hasConceptScore W3109925560C79974875 @default.
- W3109925560 hasFunder F4320320671 @default.
- W3109925560 hasLocation W31099255601 @default.
- W3109925560 hasOpenAccess W3109925560 @default.
- W3109925560 hasPrimaryLocation W31099255601 @default.
- W3109925560 hasRelatedWork W2773120646 @default.
- W3109925560 hasRelatedWork W2774265021 @default.
- W3109925560 hasRelatedWork W2988294493 @default.
- W3109925560 hasRelatedWork W3001176595 @default.
- W3109925560 hasRelatedWork W3096620784 @default.
- W3109925560 hasRelatedWork W4211209597 @default.
- W3109925560 hasRelatedWork W4285394496 @default.
- W3109925560 hasRelatedWork W4310838079 @default.
- W3109925560 hasRelatedWork W4313289316 @default.
- W3109925560 hasRelatedWork W4322098208 @default.
- W3109925560 isParatext "false" @default.
- W3109925560 isRetracted "false" @default.
- W3109925560 magId "3109925560" @default.
- W3109925560 workType "article" @default.