Matches in SemOpenAlex for { <https://semopenalex.org/work/W3110045218> ?p ?o ?g. }
- W3110045218 endingPage "210034" @default.
- W3110045218 startingPage "210023" @default.
- W3110045218 abstract "In recent years, interest in monitoring Physical Activity (PA) has increased due to its positive effect on health. New technological devices have been proposed for this purpose, mainly focused on sports, which include Machine Learning algorithms to identify the type of PA being performed. However, PA monitoring can also provide data useful for assessing the recovery process of people with impaired lower-limbs. In this work, a Machine-Learning based Physical Activity classifier design procedure is proposed, which makes use of the data provided by a Sensorized Tip that can be adapted to different Assistive Devices for Walking (ADW) such as canes or crutches. The procedure is based on three main stages: 1) defining a wide set of potential features to perform the classification; 2) optimizing the number of features by a Random-Forest approach, detecting the most relevant ones to classify five relevant activities (walking at a normal pace, walking fast, standing still, going up stairs and going down stairs); 3) training the ML-based classifiers considering the optimized feature set. A comparative analysis is carried out to evaluate the proposed procedure, using three ML-based classifier (Support Vector Machines, K-Nearest Neighbour and Artificial Neural Networks), demonstrating that the proposed approach can provide very high success rates if proper feature selection is carried out. This work presents four relevant contributions to the PA monitoring area: 1) the approach is focused on people that require ADW, which are not considered in other approaches; 2) an analysis of the features to characterize gait in people that require ADW is carried out; 3) a design procedure to optimize the number of features using a Random-Forest approach is used, avoiding a typical “brute force” procedure; and 4) a comparative analysis is carried out to demonstrate the validity of the approach." @default.
- W3110045218 created "2020-12-07" @default.
- W3110045218 creator A5010156712 @default.
- W3110045218 creator A5011428441 @default.
- W3110045218 creator A5012304289 @default.
- W3110045218 creator A5043414615 @default.
- W3110045218 creator A5064972456 @default.
- W3110045218 creator A5065852487 @default.
- W3110045218 date "2020-01-01" @default.
- W3110045218 modified "2023-10-16" @default.
- W3110045218 title "A Machine Learning Approach to Perform Physical Activity Classification Using a Sensorized Crutch Tip" @default.
- W3110045218 cites W1951099728 @default.
- W3110045218 cites W1968001249 @default.
- W3110045218 cites W1970493599 @default.
- W3110045218 cites W1984665577 @default.
- W3110045218 cites W1995435960 @default.
- W3110045218 cites W2001818617 @default.
- W3110045218 cites W2024317166 @default.
- W3110045218 cites W2028842616 @default.
- W3110045218 cites W2075683139 @default.
- W3110045218 cites W2092030178 @default.
- W3110045218 cites W2104956067 @default.
- W3110045218 cites W2105046342 @default.
- W3110045218 cites W2118192112 @default.
- W3110045218 cites W2122102074 @default.
- W3110045218 cites W2124525180 @default.
- W3110045218 cites W2127299831 @default.
- W3110045218 cites W2148930341 @default.
- W3110045218 cites W2150151814 @default.
- W3110045218 cites W2156332695 @default.
- W3110045218 cites W2164184994 @default.
- W3110045218 cites W2170931123 @default.
- W3110045218 cites W2336265486 @default.
- W3110045218 cites W2343169648 @default.
- W3110045218 cites W2397963423 @default.
- W3110045218 cites W2465124479 @default.
- W3110045218 cites W2624972355 @default.
- W3110045218 cites W2751874971 @default.
- W3110045218 cites W2756182389 @default.
- W3110045218 cites W2774090517 @default.
- W3110045218 cites W2781666465 @default.
- W3110045218 cites W2791558592 @default.
- W3110045218 cites W2794934809 @default.
- W3110045218 cites W2804936561 @default.
- W3110045218 cites W2890031513 @default.
- W3110045218 cites W2892161743 @default.
- W3110045218 cites W2895595440 @default.
- W3110045218 cites W2895761648 @default.
- W3110045218 cites W2896071522 @default.
- W3110045218 cites W2911964244 @default.
- W3110045218 cites W2914078214 @default.
- W3110045218 cites W2962816100 @default.
- W3110045218 cites W2962958625 @default.
- W3110045218 cites W2963385730 @default.
- W3110045218 cites W2989087996 @default.
- W3110045218 cites W3000268631 @default.
- W3110045218 cites W3037235256 @default.
- W3110045218 cites W3047269081 @default.
- W3110045218 cites W3150509498 @default.
- W3110045218 cites W4244921287 @default.
- W3110045218 cites W4245761325 @default.
- W3110045218 doi "https://doi.org/10.1109/access.2020.3039885" @default.
- W3110045218 hasPublicationYear "2020" @default.
- W3110045218 type Work @default.
- W3110045218 sameAs 3110045218 @default.
- W3110045218 citedByCount "9" @default.
- W3110045218 countsByYear W31100452182021 @default.
- W3110045218 countsByYear W31100452182022 @default.
- W3110045218 countsByYear W31100452182023 @default.
- W3110045218 crossrefType "journal-article" @default.
- W3110045218 hasAuthorship W3110045218A5010156712 @default.
- W3110045218 hasAuthorship W3110045218A5011428441 @default.
- W3110045218 hasAuthorship W3110045218A5012304289 @default.
- W3110045218 hasAuthorship W3110045218A5043414615 @default.
- W3110045218 hasAuthorship W3110045218A5064972456 @default.
- W3110045218 hasAuthorship W3110045218A5065852487 @default.
- W3110045218 hasBestOaLocation W31100452181 @default.
- W3110045218 hasConcept C119857082 @default.
- W3110045218 hasConcept C12267149 @default.
- W3110045218 hasConcept C127413603 @default.
- W3110045218 hasConcept C147176958 @default.
- W3110045218 hasConcept C148483581 @default.
- W3110045218 hasConcept C151800584 @default.
- W3110045218 hasConcept C154945302 @default.
- W3110045218 hasConcept C169258074 @default.
- W3110045218 hasConcept C173906292 @default.
- W3110045218 hasConcept C2777295749 @default.
- W3110045218 hasConcept C2778345045 @default.
- W3110045218 hasConcept C41008148 @default.
- W3110045218 hasConcept C42407357 @default.
- W3110045218 hasConcept C50644808 @default.
- W3110045218 hasConcept C66938386 @default.
- W3110045218 hasConcept C86803240 @default.
- W3110045218 hasConcept C95623464 @default.
- W3110045218 hasConceptScore W3110045218C119857082 @default.
- W3110045218 hasConceptScore W3110045218C12267149 @default.
- W3110045218 hasConceptScore W3110045218C127413603 @default.
- W3110045218 hasConceptScore W3110045218C147176958 @default.