Matches in SemOpenAlex for { <https://semopenalex.org/work/W3110054759> ?p ?o ?g. }
- W3110054759 endingPage "104453" @default.
- W3110054759 startingPage "104453" @default.
- W3110054759 abstract "Linear stability analysis is performed to study the electrohydrodynamic instability of viscoelastic jets subjected to axisymmetric (m=0) and first non-axisymmetric (m=1) perturbations in the creeping-flow limit. The viscoelastic liquid jet is under the influence of a radially applied electric field induced by a concentrically placed electrode located at a finite gap width from the jet. The leaky dielectric model is used to account for the finite conductivity of the fluid. The gap between the liquid jet and the electrode is assumed to be occupied by a hydrodynamically passive gas. The influence of the applied electric potential, electrode width, electrical properties, fluid elasticity, and solvent viscosity on the stability of the jet is analyzed comprehensively. For m=0 mode, the electric field has a dual effect on the stability of a Newtonian jet above a critical electrode width to jet radius ratio (Rcr). Here, the dual effect means that the electric field has a stabilizing effect for low wavenumbers (k) and a destabilizing effect for higher k. However, for R<Rcr, the electric field has a uniformly destabilizing effect, and the dual nature disappears. In the limit of perfectly conducting Newtonian jet, Rcr = 2.7. The maximum growth rate increases with an increase in Deborah number (De), which is a dimensionless relaxation time of the fluid, but the range of unstable wavenumbers remains unaffected due to an increase in De. For m=0 mode, there exists a critical Deborah number (Decr), for given values of other physical parameters, above which the growth rate diverges. This behavior is similar to the previous results for the planar geometry and is caused due to the neglect of inertia. As the conductivity of the liquid increases, the Decr decreases and reaches an asymptotic value in the limit of a perfect conductor. The inclusion of elasticity has no effect on the Rcr value, thus suggesting that the dual nature of the electric field is independent of fluid elasticity. The singularity in the growth rate is shown to be mitigated by introducing solvent viscous stresses into the model. Thus, the present study shows that finite electrode distance and elasticity have important consequences on the stability of the liquid jet for the axisymmetric mode. For m=1 mode, the growth rate is singular at low wavenumbers which is due to the neglect of inertia of the system. For the Newtonian case, the range of wavenumbers where the growth rates are singular increases with either increasing the electric potential or decreasing the electrode width. Inclusion of elasticity increases the range of wavenumbers where the growth rates are singular, whereas the range of unstable wavenumbers remains unchanged. Therefore, the neglect of inertia gives rise to non-physical growth rates even in the Newtonian flow limit for m=1 mode, compared to m=0 mode where the singularity of growth rate was observed for the Maxwell fluid above Decr." @default.
- W3110054759 created "2020-12-07" @default.
- W3110054759 creator A5009459443 @default.
- W3110054759 creator A5018554764 @default.
- W3110054759 date "2021-02-01" @default.
- W3110054759 modified "2023-09-30" @default.
- W3110054759 title "Electrohydrodynamic instability of confined viscoelastic liquid jets" @default.
- W3110054759 cites W1963911066 @default.
- W3110054759 cites W1980227075 @default.
- W3110054759 cites W1985647381 @default.
- W3110054759 cites W1987278962 @default.
- W3110054759 cites W1988294415 @default.
- W3110054759 cites W1989450336 @default.
- W3110054759 cites W1992282728 @default.
- W3110054759 cites W1993756867 @default.
- W3110054759 cites W1999680743 @default.
- W3110054759 cites W2011171481 @default.
- W3110054759 cites W2016867336 @default.
- W3110054759 cites W2018860941 @default.
- W3110054759 cites W2021046785 @default.
- W3110054759 cites W2026815692 @default.
- W3110054759 cites W2031465213 @default.
- W3110054759 cites W2033669709 @default.
- W3110054759 cites W2035860276 @default.
- W3110054759 cites W2039474689 @default.
- W3110054759 cites W2041439507 @default.
- W3110054759 cites W2043889602 @default.
- W3110054759 cites W2046316312 @default.
- W3110054759 cites W2054526729 @default.
- W3110054759 cites W2064509946 @default.
- W3110054759 cites W2064980329 @default.
- W3110054759 cites W2065834939 @default.
- W3110054759 cites W2071221783 @default.
- W3110054759 cites W2072950470 @default.
- W3110054759 cites W2079117519 @default.
- W3110054759 cites W2085502335 @default.
- W3110054759 cites W2089727745 @default.
- W3110054759 cites W2097844740 @default.
- W3110054759 cites W2098450357 @default.
- W3110054759 cites W2104558154 @default.
- W3110054759 cites W2107591159 @default.
- W3110054759 cites W2108064844 @default.
- W3110054759 cites W2110593160 @default.
- W3110054759 cites W2111390304 @default.
- W3110054759 cites W2115040611 @default.
- W3110054759 cites W2122115953 @default.
- W3110054759 cites W2126488447 @default.
- W3110054759 cites W2130751529 @default.
- W3110054759 cites W2130806733 @default.
- W3110054759 cites W2136895517 @default.
- W3110054759 cites W2139908236 @default.
- W3110054759 cites W2140718176 @default.
- W3110054759 cites W2148802535 @default.
- W3110054759 cites W2153927649 @default.
- W3110054759 cites W2155289523 @default.
- W3110054759 cites W2162327416 @default.
- W3110054759 cites W2254384606 @default.
- W3110054759 cites W2331078884 @default.
- W3110054759 cites W2332722785 @default.
- W3110054759 cites W2761772435 @default.
- W3110054759 cites W2791036170 @default.
- W3110054759 cites W2966251727 @default.
- W3110054759 cites W4231725974 @default.
- W3110054759 doi "https://doi.org/10.1016/j.jnnfm.2020.104453" @default.
- W3110054759 hasPublicationYear "2021" @default.
- W3110054759 type Work @default.
- W3110054759 sameAs 3110054759 @default.
- W3110054759 citedByCount "2" @default.
- W3110054759 countsByYear W31100547592022 @default.
- W3110054759 countsByYear W31100547592023 @default.
- W3110054759 crossrefType "journal-article" @default.
- W3110054759 hasAuthorship W3110054759A5009459443 @default.
- W3110054759 hasAuthorship W3110054759A5018554764 @default.
- W3110054759 hasConcept C119947313 @default.
- W3110054759 hasConcept C120665830 @default.
- W3110054759 hasConcept C121130766 @default.
- W3110054759 hasConcept C121332964 @default.
- W3110054759 hasConcept C17525397 @default.
- W3110054759 hasConcept C186541917 @default.
- W3110054759 hasConcept C192562407 @default.
- W3110054759 hasConcept C202970483 @default.
- W3110054759 hasConcept C207821765 @default.
- W3110054759 hasConcept C294558 @default.
- W3110054759 hasConcept C57879066 @default.
- W3110054759 hasConcept C60799052 @default.
- W3110054759 hasConcept C62520636 @default.
- W3110054759 hasConcept C80487561 @default.
- W3110054759 hasConcept C95238685 @default.
- W3110054759 hasConcept C97355855 @default.
- W3110054759 hasConceptScore W3110054759C119947313 @default.
- W3110054759 hasConceptScore W3110054759C120665830 @default.
- W3110054759 hasConceptScore W3110054759C121130766 @default.
- W3110054759 hasConceptScore W3110054759C121332964 @default.
- W3110054759 hasConceptScore W3110054759C17525397 @default.
- W3110054759 hasConceptScore W3110054759C186541917 @default.
- W3110054759 hasConceptScore W3110054759C192562407 @default.
- W3110054759 hasConceptScore W3110054759C202970483 @default.
- W3110054759 hasConceptScore W3110054759C207821765 @default.