Matches in SemOpenAlex for { <https://semopenalex.org/work/W3110054893> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W3110054893 endingPage "68" @default.
- W3110054893 startingPage "55" @default.
- W3110054893 abstract "Considering the application of prediction techniques to support the decision-making process during a dynamic environment such as the one faced during the COVID-19 pandemic, demands the evaluation of several different strategies to compare and define the most suitable solution for each necessity of prediction. Analyzing the epidemic time series, for example, the number of new confirmed cases of COVID-19 per day, classic compartmental models or linear regressions may not provide results with enough precision to support managerial or clinical decisions. The application of nonlinear models is an alternative to improve the performance of these models. The Kalman Filter (KF) is a state-space model that is used in several applications as a predictor. The filter algorithm requires low computational power and provides estimates of some unknown variables given the measurements observed over time. In this chapter, the KF predictor is considered in the analysis of five countries (China, United States, Brazil, Italy, and Singapore). Similarly to the ARIMA methodology, the results are evaluated based on three criteria: $$R^2$$ Score, MAE (Mean Absolute Error), and MSE (Mean Square Error). It is important to notice that the definition of a predictor for epidemiological time series shall be carefully evaluated and more complex implementations do not always represent a better prediction on average. For the proposed KF predictor, there were specific time-series samples with no satisfactory result, achieving a negative $$R^2$$ Score, for example, while, on the other, other samples achieved higher $$R^2$$ Score and lower MAE and MSE, when compared to other linear predictors." @default.
- W3110054893 created "2020-12-07" @default.
- W3110054893 creator A5032826039 @default.
- W3110054893 creator A5071864739 @default.
- W3110054893 creator A5072403539 @default.
- W3110054893 creator A5086422507 @default.
- W3110054893 date "2020-12-01" @default.
- W3110054893 modified "2023-10-16" @default.
- W3110054893 title "Nonlinear Prediction for the COVID-19 Data Based on Quadratic Kalman Filtering" @default.
- W3110054893 cites W2073121844 @default.
- W3110054893 cites W2079884780 @default.
- W3110054893 cites W2131286733 @default.
- W3110054893 doi "https://doi.org/10.1007/978-3-030-61913-8_4" @default.
- W3110054893 hasPublicationYear "2020" @default.
- W3110054893 type Work @default.
- W3110054893 sameAs 3110054893 @default.
- W3110054893 citedByCount "1" @default.
- W3110054893 countsByYear W31100548932023 @default.
- W3110054893 crossrefType "book-chapter" @default.
- W3110054893 hasAuthorship W3110054893A5032826039 @default.
- W3110054893 hasAuthorship W3110054893A5071864739 @default.
- W3110054893 hasAuthorship W3110054893A5072403539 @default.
- W3110054893 hasAuthorship W3110054893A5086422507 @default.
- W3110054893 hasConcept C105795698 @default.
- W3110054893 hasConcept C11413529 @default.
- W3110054893 hasConcept C121332964 @default.
- W3110054893 hasConcept C124101348 @default.
- W3110054893 hasConcept C139945424 @default.
- W3110054893 hasConcept C143724316 @default.
- W3110054893 hasConcept C151406439 @default.
- W3110054893 hasConcept C151730666 @default.
- W3110054893 hasConcept C157286648 @default.
- W3110054893 hasConcept C158622935 @default.
- W3110054893 hasConcept C24338571 @default.
- W3110054893 hasConcept C33923547 @default.
- W3110054893 hasConcept C41008148 @default.
- W3110054893 hasConcept C62520636 @default.
- W3110054893 hasConcept C86803240 @default.
- W3110054893 hasConceptScore W3110054893C105795698 @default.
- W3110054893 hasConceptScore W3110054893C11413529 @default.
- W3110054893 hasConceptScore W3110054893C121332964 @default.
- W3110054893 hasConceptScore W3110054893C124101348 @default.
- W3110054893 hasConceptScore W3110054893C139945424 @default.
- W3110054893 hasConceptScore W3110054893C143724316 @default.
- W3110054893 hasConceptScore W3110054893C151406439 @default.
- W3110054893 hasConceptScore W3110054893C151730666 @default.
- W3110054893 hasConceptScore W3110054893C157286648 @default.
- W3110054893 hasConceptScore W3110054893C158622935 @default.
- W3110054893 hasConceptScore W3110054893C24338571 @default.
- W3110054893 hasConceptScore W3110054893C33923547 @default.
- W3110054893 hasConceptScore W3110054893C41008148 @default.
- W3110054893 hasConceptScore W3110054893C62520636 @default.
- W3110054893 hasConceptScore W3110054893C86803240 @default.
- W3110054893 hasLocation W31100548931 @default.
- W3110054893 hasOpenAccess W3110054893 @default.
- W3110054893 hasPrimaryLocation W31100548931 @default.
- W3110054893 hasRelatedWork W1535527311 @default.
- W3110054893 hasRelatedWork W1714597287 @default.
- W3110054893 hasRelatedWork W2009201399 @default.
- W3110054893 hasRelatedWork W2550089990 @default.
- W3110054893 hasRelatedWork W3080840844 @default.
- W3110054893 hasRelatedWork W3082735596 @default.
- W3110054893 hasRelatedWork W3088055294 @default.
- W3110054893 hasRelatedWork W4280626000 @default.
- W3110054893 hasRelatedWork W4307874644 @default.
- W3110054893 hasRelatedWork W4362730186 @default.
- W3110054893 isParatext "false" @default.
- W3110054893 isRetracted "false" @default.
- W3110054893 magId "3110054893" @default.
- W3110054893 workType "book-chapter" @default.