Matches in SemOpenAlex for { <https://semopenalex.org/work/W3110054967> ?p ?o ?g. }
- W3110054967 endingPage "4401" @default.
- W3110054967 startingPage "4389" @default.
- W3110054967 abstract "To date, a large number of experiments are performed to develop a biochemical process. The generated data is used only once, to take decisions for development. Could we exploit data of already developed processes to make predictions for a novel process, we could significantly reduce the number of experiments needed. Processes for different products exhibit differences in behaviour, typically only a subset behave similar. Therefore, effective learning on multiple product spanning process data requires a sensible representation of the product identity. We propose to represent the product identity (a categorical feature) by embedding vectors that serve as input to a Gaussian Process regression model. We demonstrate how the embedding vectors can be learned from process data and show that they capture an interpretable notion of product similarity. The improvement in performance is compared to traditional one-hot encoding on a simulated cross product learning task. All in all, the proposed method could render possible significant reductions in wet-lab experiments." @default.
- W3110054967 created "2020-12-07" @default.
- W3110054967 creator A5022278329 @default.
- W3110054967 creator A5025899032 @default.
- W3110054967 creator A5056090999 @default.
- W3110054967 creator A5089074636 @default.
- W3110054967 date "2021-08-12" @default.
- W3110054967 modified "2023-10-16" @default.
- W3110054967 title "Knowledge transfer across cell lines using hybrid Gaussian process models with entity embedding vectors" @default.
- W3110054967 cites W2005126631 @default.
- W3110054967 cites W2005529933 @default.
- W3110054967 cites W2012676633 @default.
- W3110054967 cites W2073010988 @default.
- W3110054967 cites W2076359403 @default.
- W3110054967 cites W2085423295 @default.
- W3110054967 cites W2119235975 @default.
- W3110054967 cites W2146181584 @default.
- W3110054967 cites W2166566250 @default.
- W3110054967 cites W2168338758 @default.
- W3110054967 cites W2168405694 @default.
- W3110054967 cites W2250539671 @default.
- W3110054967 cites W2586783706 @default.
- W3110054967 cites W2610981225 @default.
- W3110054967 cites W2626868933 @default.
- W3110054967 cites W2776272325 @default.
- W3110054967 cites W2784234576 @default.
- W3110054967 cites W2905486571 @default.
- W3110054967 cites W2913746798 @default.
- W3110054967 cites W2914060604 @default.
- W3110054967 cites W2955350610 @default.
- W3110054967 cites W2964305843 @default.
- W3110054967 cites W2972056158 @default.
- W3110054967 cites W2975269777 @default.
- W3110054967 cites W2990029798 @default.
- W3110054967 cites W3026686877 @default.
- W3110054967 cites W3042608264 @default.
- W3110054967 cites W3048967681 @default.
- W3110054967 cites W3049498639 @default.
- W3110054967 cites W3102910221 @default.
- W3110054967 cites W4249517230 @default.
- W3110054967 cites W63802623 @default.
- W3110054967 doi "https://doi.org/10.1002/bit.27907" @default.
- W3110054967 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34383309" @default.
- W3110054967 hasPublicationYear "2021" @default.
- W3110054967 type Work @default.
- W3110054967 sameAs 3110054967 @default.
- W3110054967 citedByCount "13" @default.
- W3110054967 countsByYear W31100549672021 @default.
- W3110054967 countsByYear W31100549672022 @default.
- W3110054967 countsByYear W31100549672023 @default.
- W3110054967 crossrefType "journal-article" @default.
- W3110054967 hasAuthorship W3110054967A5022278329 @default.
- W3110054967 hasAuthorship W3110054967A5025899032 @default.
- W3110054967 hasAuthorship W3110054967A5056090999 @default.
- W3110054967 hasAuthorship W3110054967A5089074636 @default.
- W3110054967 hasBestOaLocation W31100549672 @default.
- W3110054967 hasConcept C103278499 @default.
- W3110054967 hasConcept C111919701 @default.
- W3110054967 hasConcept C115961682 @default.
- W3110054967 hasConcept C119857082 @default.
- W3110054967 hasConcept C121332964 @default.
- W3110054967 hasConcept C124101348 @default.
- W3110054967 hasConcept C138885662 @default.
- W3110054967 hasConcept C154945302 @default.
- W3110054967 hasConcept C163716315 @default.
- W3110054967 hasConcept C165696696 @default.
- W3110054967 hasConcept C17744445 @default.
- W3110054967 hasConcept C199539241 @default.
- W3110054967 hasConcept C2524010 @default.
- W3110054967 hasConcept C2776359362 @default.
- W3110054967 hasConcept C2776401178 @default.
- W3110054967 hasConcept C33923547 @default.
- W3110054967 hasConcept C38652104 @default.
- W3110054967 hasConcept C41008148 @default.
- W3110054967 hasConcept C41608201 @default.
- W3110054967 hasConcept C41895202 @default.
- W3110054967 hasConcept C5274069 @default.
- W3110054967 hasConcept C61326573 @default.
- W3110054967 hasConcept C62520636 @default.
- W3110054967 hasConcept C81692654 @default.
- W3110054967 hasConcept C90673727 @default.
- W3110054967 hasConcept C94625758 @default.
- W3110054967 hasConcept C98045186 @default.
- W3110054967 hasConceptScore W3110054967C103278499 @default.
- W3110054967 hasConceptScore W3110054967C111919701 @default.
- W3110054967 hasConceptScore W3110054967C115961682 @default.
- W3110054967 hasConceptScore W3110054967C119857082 @default.
- W3110054967 hasConceptScore W3110054967C121332964 @default.
- W3110054967 hasConceptScore W3110054967C124101348 @default.
- W3110054967 hasConceptScore W3110054967C138885662 @default.
- W3110054967 hasConceptScore W3110054967C154945302 @default.
- W3110054967 hasConceptScore W3110054967C163716315 @default.
- W3110054967 hasConceptScore W3110054967C165696696 @default.
- W3110054967 hasConceptScore W3110054967C17744445 @default.
- W3110054967 hasConceptScore W3110054967C199539241 @default.
- W3110054967 hasConceptScore W3110054967C2524010 @default.
- W3110054967 hasConceptScore W3110054967C2776359362 @default.
- W3110054967 hasConceptScore W3110054967C2776401178 @default.