Matches in SemOpenAlex for { <https://semopenalex.org/work/W3110147505> ?p ?o ?g. }
- W3110147505 endingPage "8400" @default.
- W3110147505 startingPage "8400" @default.
- W3110147505 abstract "The accurate modeling and forecasting of the power output of photovoltaic (PV) systems are critical to efficiently managing their integration in smart grids, delivery, and storage. This paper intends to provide efficient short-term forecasting of solar power production using Variational AutoEncoder (VAE) model. Adopting the VAE-driven deep learning model is expected to improve forecasting accuracy because of its suitable performance in time-series modeling and flexible nonlinear approximation. Both single- and multi-step-ahead forecasts are investigated in this work. Data from two grid-connected plants (a 243 kW parking lot canopy array in the US and a 9 MW PV system in Algeria) are employed to show the investigated deep learning models’ performance. Specifically, the forecasting outputs of the proposed VAE-based forecasting method have been compared with seven deep learning methods, namely recurrent neural network, Long short-term memory (LSTM), Bidirectional LSTM, Convolutional LSTM network, Gated recurrent units, stacked autoencoder, and restricted Boltzmann machine, and two commonly used machine learning methods, namely logistic regression and support vector regression. The results of this investigation demonstrate the satisfying performance of deep learning techniques to forecast solar power and point out that the VAE consistently performed better than the other methods. Also, results confirmed the superior performance of deep learning models compared to the two considered baseline machine learning models." @default.
- W3110147505 created "2020-12-07" @default.
- W3110147505 creator A5024155508 @default.
- W3110147505 creator A5059861156 @default.
- W3110147505 creator A5087572406 @default.
- W3110147505 creator A5090118631 @default.
- W3110147505 date "2020-11-25" @default.
- W3110147505 modified "2023-10-03" @default.
- W3110147505 title "Short-Term Forecasting of Photovoltaic Solar Power Production Using Variational Auto-Encoder Driven Deep Learning Approach" @default.
- W3110147505 cites W1208518215 @default.
- W3110147505 cites W2048817830 @default.
- W3110147505 cites W2059504782 @default.
- W3110147505 cites W2064675550 @default.
- W3110147505 cites W2131774270 @default.
- W3110147505 cites W2136922672 @default.
- W3110147505 cites W2257979135 @default.
- W3110147505 cites W2601171548 @default.
- W3110147505 cites W2607339923 @default.
- W3110147505 cites W2763128055 @default.
- W3110147505 cites W2766098526 @default.
- W3110147505 cites W2792326773 @default.
- W3110147505 cites W2801973365 @default.
- W3110147505 cites W2802229284 @default.
- W3110147505 cites W2802601181 @default.
- W3110147505 cites W2811192320 @default.
- W3110147505 cites W2825946107 @default.
- W3110147505 cites W2884001105 @default.
- W3110147505 cites W2888165363 @default.
- W3110147505 cites W2920873814 @default.
- W3110147505 cites W2921938384 @default.
- W3110147505 cites W2922465095 @default.
- W3110147505 cites W2944920662 @default.
- W3110147505 cites W2953794436 @default.
- W3110147505 cites W2956074973 @default.
- W3110147505 cites W2963682069 @default.
- W3110147505 cites W2973548560 @default.
- W3110147505 cites W2990198113 @default.
- W3110147505 cites W2990430732 @default.
- W3110147505 cites W2991020813 @default.
- W3110147505 cites W3011829128 @default.
- W3110147505 cites W3015676876 @default.
- W3110147505 cites W3016208458 @default.
- W3110147505 cites W3042316884 @default.
- W3110147505 cites W3047313329 @default.
- W3110147505 cites W3048731797 @default.
- W3110147505 cites W3081812382 @default.
- W3110147505 doi "https://doi.org/10.3390/app10238400" @default.
- W3110147505 hasPublicationYear "2020" @default.
- W3110147505 type Work @default.
- W3110147505 sameAs 3110147505 @default.
- W3110147505 citedByCount "59" @default.
- W3110147505 countsByYear W31101475052020 @default.
- W3110147505 countsByYear W31101475052021 @default.
- W3110147505 countsByYear W31101475052022 @default.
- W3110147505 countsByYear W31101475052023 @default.
- W3110147505 crossrefType "journal-article" @default.
- W3110147505 hasAuthorship W3110147505A5024155508 @default.
- W3110147505 hasAuthorship W3110147505A5059861156 @default.
- W3110147505 hasAuthorship W3110147505A5087572406 @default.
- W3110147505 hasAuthorship W3110147505A5090118631 @default.
- W3110147505 hasBestOaLocation W31101475051 @default.
- W3110147505 hasConcept C101738243 @default.
- W3110147505 hasConcept C108583219 @default.
- W3110147505 hasConcept C119599485 @default.
- W3110147505 hasConcept C119857082 @default.
- W3110147505 hasConcept C121332964 @default.
- W3110147505 hasConcept C127413603 @default.
- W3110147505 hasConcept C147168706 @default.
- W3110147505 hasConcept C154945302 @default.
- W3110147505 hasConcept C41008148 @default.
- W3110147505 hasConcept C41291067 @default.
- W3110147505 hasConcept C50644808 @default.
- W3110147505 hasConcept C61797465 @default.
- W3110147505 hasConcept C62520636 @default.
- W3110147505 hasConcept C81363708 @default.
- W3110147505 hasConceptScore W3110147505C101738243 @default.
- W3110147505 hasConceptScore W3110147505C108583219 @default.
- W3110147505 hasConceptScore W3110147505C119599485 @default.
- W3110147505 hasConceptScore W3110147505C119857082 @default.
- W3110147505 hasConceptScore W3110147505C121332964 @default.
- W3110147505 hasConceptScore W3110147505C127413603 @default.
- W3110147505 hasConceptScore W3110147505C147168706 @default.
- W3110147505 hasConceptScore W3110147505C154945302 @default.
- W3110147505 hasConceptScore W3110147505C41008148 @default.
- W3110147505 hasConceptScore W3110147505C41291067 @default.
- W3110147505 hasConceptScore W3110147505C50644808 @default.
- W3110147505 hasConceptScore W3110147505C61797465 @default.
- W3110147505 hasConceptScore W3110147505C62520636 @default.
- W3110147505 hasConceptScore W3110147505C81363708 @default.
- W3110147505 hasIssue "23" @default.
- W3110147505 hasLocation W31101475051 @default.
- W3110147505 hasLocation W31101475052 @default.
- W3110147505 hasLocation W31101475053 @default.
- W3110147505 hasOpenAccess W3110147505 @default.
- W3110147505 hasPrimaryLocation W31101475051 @default.
- W3110147505 hasRelatedWork W2337926734 @default.
- W3110147505 hasRelatedWork W2732415564 @default.
- W3110147505 hasRelatedWork W2738751727 @default.