Matches in SemOpenAlex for { <https://semopenalex.org/work/W3110183245> ?p ?o ?g. }
- W3110183245 endingPage "106738" @default.
- W3110183245 startingPage "106738" @default.
- W3110183245 abstract "Abstract In this article, analysis of average Nusselt number (Nuavg), which indicates the heat removal from the battery pack cooled by flowing fluid is carried out considering coupled heat transfer condition at the pack and coolant interface. Five categories of coolant, mainly gases, common oils, thermal oils, nanofluids, and liquid metals, are selected. In each coolant category, five fluids (having different Prandtl number Pr) are selected and passed over the Li-ion battery pack. The analysis is made for different conductivity ratio (Cr), heat generation term (Qgen), Reynolds number (Re), and Pr. Pr varying in the range 0.0208–511.5 (25 coolants) and Cr for each category of coolant having its own upper and lower limit are used to analyze the heat removed from the battery pack. Using single feed-forward network and integrating two feed-forward networks having multi-layers with back-propagation is employed for artificial neural network (ANN) modelling. In this modelling, the concept of the main network and space network is devised for multiple back propagation (MBP). The numerical analysis revealed that the temperature distribution in battery and fluid is greatly affected by increasing Cr. The maximum temperature located close to the upper edge of battery is found to get reduced significantly with the increase of Cr, but upto a certain limit above which reduction is marginal. The analysis carried out reveals that Cr and Qgen have no role in improving Nuavg while Pr and Re vary it significantly in each step. Moreover, Nuavg is found to increase with Re continuously irrespective of any Cr and Qgen. While, for oils with an increase in Pr and Re, Nuavg was found to reduce significantly. Nanofluids are found to be more effective in improving heat transfer from the battery pack when cooled by flowing nano-coolants over it. The MBP networks proposed are successfully trained, and hence they can be used for prediction of Nuavg." @default.
- W3110183245 created "2020-12-07" @default.
- W3110183245 creator A5007394526 @default.
- W3110183245 creator A5016255249 @default.
- W3110183245 creator A5034555076 @default.
- W3110183245 creator A5042376108 @default.
- W3110183245 creator A5057241730 @default.
- W3110183245 creator A5059857651 @default.
- W3110183245 creator A5084367410 @default.
- W3110183245 date "2021-03-01" @default.
- W3110183245 modified "2023-10-06" @default.
- W3110183245 title "Nusselt number analysis from a battery pack cooled by different fluids and multiple back-propagation modelling using feed-forward networks" @default.
- W3110183245 cites W1989437963 @default.
- W3110183245 cites W2013797079 @default.
- W3110183245 cites W2031886864 @default.
- W3110183245 cites W2052449624 @default.
- W3110183245 cites W2070262676 @default.
- W3110183245 cites W2071724588 @default.
- W3110183245 cites W2077838129 @default.
- W3110183245 cites W2189494241 @default.
- W3110183245 cites W2197515183 @default.
- W3110183245 cites W2416833064 @default.
- W3110183245 cites W2418122581 @default.
- W3110183245 cites W2495983968 @default.
- W3110183245 cites W2508033214 @default.
- W3110183245 cites W2513186498 @default.
- W3110183245 cites W2621951536 @default.
- W3110183245 cites W2738143929 @default.
- W3110183245 cites W2739498283 @default.
- W3110183245 cites W2743721224 @default.
- W3110183245 cites W2758616062 @default.
- W3110183245 cites W2765316395 @default.
- W3110183245 cites W2766608987 @default.
- W3110183245 cites W2770382882 @default.
- W3110183245 cites W2781783527 @default.
- W3110183245 cites W2790116872 @default.
- W3110183245 cites W2790740662 @default.
- W3110183245 cites W2792238871 @default.
- W3110183245 cites W2805044555 @default.
- W3110183245 cites W2811442969 @default.
- W3110183245 cites W2825358982 @default.
- W3110183245 cites W2884485023 @default.
- W3110183245 cites W2887035457 @default.
- W3110183245 cites W2888142130 @default.
- W3110183245 cites W2888706702 @default.
- W3110183245 cites W2889012335 @default.
- W3110183245 cites W2897241621 @default.
- W3110183245 cites W2897447096 @default.
- W3110183245 cites W2902544920 @default.
- W3110183245 cites W2907715993 @default.
- W3110183245 cites W2911408896 @default.
- W3110183245 cites W2921115721 @default.
- W3110183245 cites W2921432503 @default.
- W3110183245 cites W2987372064 @default.
- W3110183245 cites W2991182423 @default.
- W3110183245 cites W3030784038 @default.
- W3110183245 doi "https://doi.org/10.1016/j.ijthermalsci.2020.106738" @default.
- W3110183245 hasPublicationYear "2021" @default.
- W3110183245 type Work @default.
- W3110183245 sameAs 3110183245 @default.
- W3110183245 citedByCount "62" @default.
- W3110183245 countsByYear W31101832452021 @default.
- W3110183245 countsByYear W31101832452022 @default.
- W3110183245 countsByYear W31101832452023 @default.
- W3110183245 crossrefType "journal-article" @default.
- W3110183245 hasAuthorship W3110183245A5007394526 @default.
- W3110183245 hasAuthorship W3110183245A5016255249 @default.
- W3110183245 hasAuthorship W3110183245A5034555076 @default.
- W3110183245 hasAuthorship W3110183245A5042376108 @default.
- W3110183245 hasAuthorship W3110183245A5057241730 @default.
- W3110183245 hasAuthorship W3110183245A5059857651 @default.
- W3110183245 hasAuthorship W3110183245A5084367410 @default.
- W3110183245 hasBestOaLocation W31101832452 @default.
- W3110183245 hasConcept C121332964 @default.
- W3110183245 hasConcept C130230704 @default.
- W3110183245 hasConcept C163258240 @default.
- W3110183245 hasConcept C182748727 @default.
- W3110183245 hasConcept C192562407 @default.
- W3110183245 hasConcept C196558001 @default.
- W3110183245 hasConcept C2778508592 @default.
- W3110183245 hasConcept C41008148 @default.
- W3110183245 hasConcept C555008776 @default.
- W3110183245 hasConcept C57879066 @default.
- W3110183245 hasConcept C97355855 @default.
- W3110183245 hasConceptScore W3110183245C121332964 @default.
- W3110183245 hasConceptScore W3110183245C130230704 @default.
- W3110183245 hasConceptScore W3110183245C163258240 @default.
- W3110183245 hasConceptScore W3110183245C182748727 @default.
- W3110183245 hasConceptScore W3110183245C192562407 @default.
- W3110183245 hasConceptScore W3110183245C196558001 @default.
- W3110183245 hasConceptScore W3110183245C2778508592 @default.
- W3110183245 hasConceptScore W3110183245C41008148 @default.
- W3110183245 hasConceptScore W3110183245C555008776 @default.
- W3110183245 hasConceptScore W3110183245C57879066 @default.
- W3110183245 hasConceptScore W3110183245C97355855 @default.
- W3110183245 hasLocation W31101832451 @default.
- W3110183245 hasLocation W31101832452 @default.
- W3110183245 hasOpenAccess W3110183245 @default.