Matches in SemOpenAlex for { <https://semopenalex.org/work/W3110208496> ?p ?o ?g. }
- W3110208496 endingPage "6823" @default.
- W3110208496 startingPage "6823" @default.
- W3110208496 abstract "In recent years, hyperspectral images (HSIs) have attained considerable attention in computer vision (CV) due to their wide utility in remote sensing. Unlike images with three or lesser channels, HSIs have a large number of spectral bands. Recent works demonstrate the use of modern deep learning based CV techniques like convolutional neural networks (CNNs) for analyzing HSI. CNNs have receptive fields (RFs) fueled by learnable weights, which are trained to extract useful features from images. In this work, a novel multi-receptive CNN module called GhoMR is proposed for HSI classification. GhoMR utilizes blocks containing several RFs, extracting features in a residual fashion. Each RF extracts features which are used by other RFs to extract more complex features in a hierarchical manner. However, the higher the number of RFs, the greater the associated weights, thus heavier is the network. Most complex architectures suffer from this shortcoming. To tackle this, the recently found Ghost module is used as the basic building unit. Ghost modules address the feature redundancy in CNNs by extracting only limited features and performing cheap transformations on them, thus reducing the overall parameters in the network. To test the discriminative potential of GhoMR, a simple network called GhoMR-Net is constructed using GhoMR modules, and experiments are performed on three public HSI data sets—Indian Pines, University of Pavia, and Salinas Scene. The classification performance is measured using three metrics—overall accuracy (OA), Kappa coefficient (Kappa), and average accuracy (AA). Comparisons with ten state-of-the-art architectures are shown to demonstrate the effectiveness of the method further. Although lightweight, the proposed GhoMR-Net provides comparable or better performance than other networks. The PyTorch code for this study is made available at the iamarijit/GhoMR GitHub repository." @default.
- W3110208496 created "2020-12-07" @default.
- W3110208496 creator A5003577135 @default.
- W3110208496 creator A5036573895 @default.
- W3110208496 creator A5072611108 @default.
- W3110208496 date "2020-11-29" @default.
- W3110208496 modified "2023-09-23" @default.
- W3110208496 title "GhoMR: Multi-Receptive Lightweight Residual Modules for Hyperspectral Classification" @default.
- W3110208496 cites W1972399486 @default.
- W3110208496 cites W1977791453 @default.
- W3110208496 cites W1998030734 @default.
- W3110208496 cites W2004104348 @default.
- W3110208496 cites W2022470997 @default.
- W3110208496 cites W2031132062 @default.
- W3110208496 cites W2042436931 @default.
- W3110208496 cites W2052160904 @default.
- W3110208496 cites W2097915756 @default.
- W3110208496 cites W2103094532 @default.
- W3110208496 cites W2114819256 @default.
- W3110208496 cites W2136251662 @default.
- W3110208496 cites W2152057649 @default.
- W3110208496 cites W2155658307 @default.
- W3110208496 cites W2162698522 @default.
- W3110208496 cites W2164330327 @default.
- W3110208496 cites W2595902385 @default.
- W3110208496 cites W2614326984 @default.
- W3110208496 cites W2764276316 @default.
- W3110208496 cites W2768309288 @default.
- W3110208496 cites W2774466993 @default.
- W3110208496 cites W2792332881 @default.
- W3110208496 cites W2793645503 @default.
- W3110208496 cites W2804902458 @default.
- W3110208496 cites W2809482722 @default.
- W3110208496 cites W2896847173 @default.
- W3110208496 cites W2914331134 @default.
- W3110208496 cites W2928165649 @default.
- W3110208496 cites W2941387379 @default.
- W3110208496 cites W2963881378 @default.
- W3110208496 cites W2975372759 @default.
- W3110208496 cites W2977355106 @default.
- W3110208496 cites W2997272341 @default.
- W3110208496 cites W3005148902 @default.
- W3110208496 cites W3010420609 @default.
- W3110208496 cites W3014628500 @default.
- W3110208496 cites W3046819794 @default.
- W3110208496 cites W3048051136 @default.
- W3110208496 cites W3048180163 @default.
- W3110208496 cites W3101012758 @default.
- W3110208496 cites W3105357426 @default.
- W3110208496 cites W639708223 @default.
- W3110208496 doi "https://doi.org/10.3390/s20236823" @default.
- W3110208496 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7729750" @default.
- W3110208496 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33260347" @default.
- W3110208496 hasPublicationYear "2020" @default.
- W3110208496 type Work @default.
- W3110208496 sameAs 3110208496 @default.
- W3110208496 citedByCount "2" @default.
- W3110208496 countsByYear W31102084962021 @default.
- W3110208496 crossrefType "journal-article" @default.
- W3110208496 hasAuthorship W3110208496A5003577135 @default.
- W3110208496 hasAuthorship W3110208496A5036573895 @default.
- W3110208496 hasAuthorship W3110208496A5072611108 @default.
- W3110208496 hasBestOaLocation W31102084961 @default.
- W3110208496 hasConcept C108583219 @default.
- W3110208496 hasConcept C111919701 @default.
- W3110208496 hasConcept C11413529 @default.
- W3110208496 hasConcept C138885662 @default.
- W3110208496 hasConcept C152124472 @default.
- W3110208496 hasConcept C153180895 @default.
- W3110208496 hasConcept C154945302 @default.
- W3110208496 hasConcept C155512373 @default.
- W3110208496 hasConcept C159078339 @default.
- W3110208496 hasConcept C2776401178 @default.
- W3110208496 hasConcept C41008148 @default.
- W3110208496 hasConcept C41895202 @default.
- W3110208496 hasConcept C81363708 @default.
- W3110208496 hasConcept C97931131 @default.
- W3110208496 hasConceptScore W3110208496C108583219 @default.
- W3110208496 hasConceptScore W3110208496C111919701 @default.
- W3110208496 hasConceptScore W3110208496C11413529 @default.
- W3110208496 hasConceptScore W3110208496C138885662 @default.
- W3110208496 hasConceptScore W3110208496C152124472 @default.
- W3110208496 hasConceptScore W3110208496C153180895 @default.
- W3110208496 hasConceptScore W3110208496C154945302 @default.
- W3110208496 hasConceptScore W3110208496C155512373 @default.
- W3110208496 hasConceptScore W3110208496C159078339 @default.
- W3110208496 hasConceptScore W3110208496C2776401178 @default.
- W3110208496 hasConceptScore W3110208496C41008148 @default.
- W3110208496 hasConceptScore W3110208496C41895202 @default.
- W3110208496 hasConceptScore W3110208496C81363708 @default.
- W3110208496 hasConceptScore W3110208496C97931131 @default.
- W3110208496 hasIssue "23" @default.
- W3110208496 hasLocation W31102084961 @default.
- W3110208496 hasLocation W31102084962 @default.
- W3110208496 hasLocation W31102084963 @default.
- W3110208496 hasOpenAccess W3110208496 @default.
- W3110208496 hasPrimaryLocation W31102084961 @default.
- W3110208496 hasRelatedWork W2731899572 @default.