Matches in SemOpenAlex for { <https://semopenalex.org/work/W3110324850> ?p ?o ?g. }
- W3110324850 endingPage "100031" @default.
- W3110324850 startingPage "100031" @default.
- W3110324850 abstract "Lost circulation is an expensive and critical problem in the drilling operations. Millions of dollars are spent every year to mitigate or stop this problem. In this work, data from over 3000 wells were collected from multiple sources. The data went through a processing step where all outliers were removed and decision rules were set up. Multiple machine learning methods (support vector machine, decision trees, logistic regression, artificial neural networks, and ensemble trees) were used to create a model that can predict the best lost circulation treatment based on the type of loss and the reason of loss. 5-fold cross-validation was conducted to ensure no overfitting in the created model. After using all the aforementioned machine learning methods to train models to choose the best lost circulation treatment, overall, the results showed that support vector machine had the highest accuracy among the other algorithms. Thus, it was selected to train the model. The created model went through quality control/quality assurance (QC/QA) to limit the results of incorrect classification. Two treatments were suggested to treat partial loss, four to treat severe loss, and seven for complete loss, based on the reason of loss. In addition, a formalized methodology to respond to lost circulation was provided to help the drilling personnel handling lost circulation in the field." @default.
- W3110324850 created "2020-12-07" @default.
- W3110324850 creator A5044928979 @default.
- W3110324850 creator A5085743144 @default.
- W3110324850 creator A5088381322 @default.
- W3110324850 date "2020-11-01" @default.
- W3110324850 modified "2023-10-10" @default.
- W3110324850 title "Data–driven decision–making for lost circulation treatments: A machine learning approach" @default.
- W3110324850 cites W1803288713 @default.
- W3110324850 cites W1992429431 @default.
- W3110324850 cites W2034503747 @default.
- W3110324850 cites W2034606060 @default.
- W3110324850 cites W2049268506 @default.
- W3110324850 cites W2054979538 @default.
- W3110324850 cites W2057506026 @default.
- W3110324850 cites W2078605657 @default.
- W3110324850 cites W2118845193 @default.
- W3110324850 cites W2475392251 @default.
- W3110324850 cites W2562142185 @default.
- W3110324850 cites W2570995264 @default.
- W3110324850 cites W2589226272 @default.
- W3110324850 cites W2606663083 @default.
- W3110324850 cites W2614614812 @default.
- W3110324850 cites W2749762117 @default.
- W3110324850 cites W2898214691 @default.
- W3110324850 cites W2898884023 @default.
- W3110324850 cites W2902023262 @default.
- W3110324850 cites W2910852930 @default.
- W3110324850 cites W2916018064 @default.
- W3110324850 cites W2918991885 @default.
- W3110324850 cites W2921288475 @default.
- W3110324850 cites W2922071875 @default.
- W3110324850 cites W2944456675 @default.
- W3110324850 cites W2952418323 @default.
- W3110324850 cites W2963981452 @default.
- W3110324850 cites W2968953154 @default.
- W3110324850 cites W3017785036 @default.
- W3110324850 cites W4239510810 @default.
- W3110324850 cites W2041459190 @default.
- W3110324850 doi "https://doi.org/10.1016/j.egyai.2020.100031" @default.
- W3110324850 hasPublicationYear "2020" @default.
- W3110324850 type Work @default.
- W3110324850 sameAs 3110324850 @default.
- W3110324850 citedByCount "8" @default.
- W3110324850 countsByYear W31103248502021 @default.
- W3110324850 countsByYear W31103248502022 @default.
- W3110324850 countsByYear W31103248502023 @default.
- W3110324850 crossrefType "journal-article" @default.
- W3110324850 hasAuthorship W3110324850A5044928979 @default.
- W3110324850 hasAuthorship W3110324850A5085743144 @default.
- W3110324850 hasAuthorship W3110324850A5088381322 @default.
- W3110324850 hasBestOaLocation W31103248501 @default.
- W3110324850 hasConcept C11111821 @default.
- W3110324850 hasConcept C119857082 @default.
- W3110324850 hasConcept C12267149 @default.
- W3110324850 hasConcept C127413603 @default.
- W3110324850 hasConcept C146978453 @default.
- W3110324850 hasConcept C152068911 @default.
- W3110324850 hasConcept C154945302 @default.
- W3110324850 hasConcept C22019652 @default.
- W3110324850 hasConcept C25197100 @default.
- W3110324850 hasConcept C2779439521 @default.
- W3110324850 hasConcept C41008148 @default.
- W3110324850 hasConcept C50644808 @default.
- W3110324850 hasConcept C78519656 @default.
- W3110324850 hasConcept C79337645 @default.
- W3110324850 hasConcept C84525736 @default.
- W3110324850 hasConceptScore W3110324850C11111821 @default.
- W3110324850 hasConceptScore W3110324850C119857082 @default.
- W3110324850 hasConceptScore W3110324850C12267149 @default.
- W3110324850 hasConceptScore W3110324850C127413603 @default.
- W3110324850 hasConceptScore W3110324850C146978453 @default.
- W3110324850 hasConceptScore W3110324850C152068911 @default.
- W3110324850 hasConceptScore W3110324850C154945302 @default.
- W3110324850 hasConceptScore W3110324850C22019652 @default.
- W3110324850 hasConceptScore W3110324850C25197100 @default.
- W3110324850 hasConceptScore W3110324850C2779439521 @default.
- W3110324850 hasConceptScore W3110324850C41008148 @default.
- W3110324850 hasConceptScore W3110324850C50644808 @default.
- W3110324850 hasConceptScore W3110324850C78519656 @default.
- W3110324850 hasConceptScore W3110324850C79337645 @default.
- W3110324850 hasConceptScore W3110324850C84525736 @default.
- W3110324850 hasLocation W31103248501 @default.
- W3110324850 hasOpenAccess W3110324850 @default.
- W3110324850 hasPrimaryLocation W31103248501 @default.
- W3110324850 hasRelatedWork W1574414179 @default.
- W3110324850 hasRelatedWork W1971479601 @default.
- W3110324850 hasRelatedWork W2391646293 @default.
- W3110324850 hasRelatedWork W2490526372 @default.
- W3110324850 hasRelatedWork W345221861 @default.
- W3110324850 hasRelatedWork W4281702477 @default.
- W3110324850 hasRelatedWork W4297676672 @default.
- W3110324850 hasRelatedWork W4362597605 @default.
- W3110324850 hasRelatedWork W4376166922 @default.
- W3110324850 hasRelatedWork W4378510483 @default.
- W3110324850 hasVolume "2" @default.
- W3110324850 isParatext "false" @default.
- W3110324850 isRetracted "false" @default.