Matches in SemOpenAlex for { <https://semopenalex.org/work/W3110361240> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W3110361240 abstract "<p>It is of great importance in many fields to be able to forecast the likely propagation paths of fluid-driven factures. These include mineral veins, human-made hydraulic fractures, and dikes/inclined sheets. The physical principles that control the propagation of all fluid-driven fractures are the same. Here the focus is on dikes and inclined sheets where the selected path determines whether, where, and when a particular dike/sheet reaches the surface to erupt. Here we provide analytical and numerical models on dike/sheet paths in crustal segments (including volcanoes) that include layers of various types (lava flows, pyroclastic flows, tuff layers, soil layers, etc) as well as mechanically weak contacts and faults. The modelling results are then compared with, and tested on, actual data of two types. (a) Seismic data on the paths of dikes/sheets as well as human-made hydraulic fractures, and (b) field data on the actual propagation paths of dikes/sheets in layered and faulted rocks</p><p>The numerical results show that, particularly in stratovolcanoes, the paths are likely to be complex with common deflections along layer contacts, in agreement with field observations. &#160;Also, some dikes/sheets may use existing faults as parts of their paths, primarily steeply dipping and recently active normal faults. The propagation path is thus not entirely in pure mode I but rather partly in a mixed mode. The energy required to propagate the dike/sheet is mainly the surface energy needed to rupture the rock, to form two new surfaces and move them apart as the fracture propagates. The energy available to drive the fracture is the stored elastic energy in the hosting crustal segment.</p><p>From its point of initiation in the magma-chamber roof, a dike/sheet can, theoretically, select any one of an infinite number of paths to follow to its point of arrest or eruption. It is shown that the eventual path selected is the one of least action, that is, the path along which the time integral of the difference between the kinetic and potential energies is an extremum (normally a minimum) relative to all other possible paths with the same endpoints. If the kinetic energy is omitted, and there are no constraints, then least action becomes the minimum potential energy, which was postulated as a basis for understanding dike propagation by Gudmundsson (1986). Here it is shown how this theoretical framework can help us make reliable forecasts of dike/sheet paths and associated volcanic eruptions.</p><p>Gudmundsson, A., 1986. Formation of dykes, feeder-dykes, and the intrusion of dykes from magma chambers. Bulletin of Volcanology, 47, 537-550.</p><p>Gudmundsson, A., 2020. Volcanotectonics: Understanding the Structure, Deformation, and Dynamics of Volcanoes. Cambridge University Press, Cambridge.</p><p>Drymoni, K., Browning, J. Gudmundsson, A., 2020. Dyke-arrest scenarios in extensional regimes: insights from field observations and numerical models, Santorini, Greece. Journal of Volcanology and Geothermal Research (in press).</p><p>&#160;</p>" @default.
- W3110361240 created "2020-12-07" @default.
- W3110361240 creator A5003481615 @default.
- W3110361240 creator A5029667020 @default.
- W3110361240 creator A5053906869 @default.
- W3110361240 creator A5057833211 @default.
- W3110361240 date "2020-03-23" @default.
- W3110361240 modified "2023-09-26" @default.
- W3110361240 title "Forecasting the propagation paths of fluid-driven fractures, particularly dikes and inclined sheets" @default.
- W3110361240 doi "https://doi.org/10.5194/egusphere-egu2020-20010" @default.
- W3110361240 hasPublicationYear "2020" @default.
- W3110361240 type Work @default.
- W3110361240 sameAs 3110361240 @default.
- W3110361240 citedByCount "0" @default.
- W3110361240 crossrefType "posted-content" @default.
- W3110361240 hasAuthorship W3110361240A5003481615 @default.
- W3110361240 hasAuthorship W3110361240A5029667020 @default.
- W3110361240 hasAuthorship W3110361240A5053906869 @default.
- W3110361240 hasAuthorship W3110361240A5057833211 @default.
- W3110361240 hasConcept C113754120 @default.
- W3110361240 hasConcept C120806208 @default.
- W3110361240 hasConcept C127313418 @default.
- W3110361240 hasConcept C165205528 @default.
- W3110361240 hasConcept C187320778 @default.
- W3110361240 hasConcept C52543455 @default.
- W3110361240 hasConcept C5900021 @default.
- W3110361240 hasConcept C83893233 @default.
- W3110361240 hasConceptScore W3110361240C113754120 @default.
- W3110361240 hasConceptScore W3110361240C120806208 @default.
- W3110361240 hasConceptScore W3110361240C127313418 @default.
- W3110361240 hasConceptScore W3110361240C165205528 @default.
- W3110361240 hasConceptScore W3110361240C187320778 @default.
- W3110361240 hasConceptScore W3110361240C52543455 @default.
- W3110361240 hasConceptScore W3110361240C5900021 @default.
- W3110361240 hasConceptScore W3110361240C83893233 @default.
- W3110361240 hasLocation W31103612401 @default.
- W3110361240 hasOpenAccess W3110361240 @default.
- W3110361240 hasPrimaryLocation W31103612401 @default.
- W3110361240 hasRelatedWork W12328656 @default.
- W3110361240 hasRelatedWork W21198033 @default.
- W3110361240 hasRelatedWork W43472695 @default.
- W3110361240 hasRelatedWork W55750434 @default.
- W3110361240 hasRelatedWork W61574507 @default.
- W3110361240 hasRelatedWork W75536153 @default.
- W3110361240 hasRelatedWork W84505739 @default.
- W3110361240 hasRelatedWork W45302761 @default.
- W3110361240 hasRelatedWork W5943830 @default.
- W3110361240 hasRelatedWork W8130538 @default.
- W3110361240 isParatext "false" @default.
- W3110361240 isRetracted "false" @default.
- W3110361240 magId "3110361240" @default.
- W3110361240 workType "article" @default.