Matches in SemOpenAlex for { <https://semopenalex.org/work/W3110362480> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3110362480 abstract "The ability to accurately forecast the building energy consumed can be valuable in a number of contexts. In Energy Performance Contracting and retrofitting actions, a key requirement for determining the Return on Investment is a precise and accurate quantification of the energy and concomitant cost savings resulting from the implementation of a set of Energy Conservation Measures. The precise quantification of energy savings is critical for Energy Savings Companies (ESCOs), under the guaranteed or shared savings contracting models; typically, this is done following a Measurement and Verification (M&V) protocol where the pre-intervention energy, computed using a regression model is compared against actual post-intervention measured energy values. Another example, during the building operational phase, is the use of operational intelligence platforms to compare between expected and actual performance, and inform the facility manager when deviations or degradations are observed so that actions can be taken.Common to both these examples, is the need for a model capable of predicting with sufficient accuracy the energy consumption, while taking into account key factors that affect the overall performance, like prevailing weather conditions, occupancy patterns, etc. In the literature two classes of such models are often encountered: i) bottom-up, physics-based whole building simulation models; and ii) models based on statistical or machine learning techniques, requiring data typically obtained from the building monitoring system. The development of physics-based models necessitates a laborious and costly design and calibration process requiring expert knowledge; in the work presented here, data-driven models of the latter category are investigated since they have less stringent requirements, typically the availability of good-quality data. Different types of machine-learning models have been reported in literature, such as Neural Networks, Support Vector Machines, Gaussian Mixtures, etc. These are regression models aiming at identifying the underlying relationship between the depended variables (in our case the total energy consumption of the building) and the independent or explanatory variables, such as outside temperature levels, solar radiation, occupancy levels, etc.From the available model types, we adopt Gaussian Processes (GPs) since they do not require the excessive fine-tuning other models necessitate (e.g. selecting the number of hidden layers and nodes of a Neural Network or the hyper-parameters for the Support Vector Machines). GP models are purely data-oriented in the sense that an a-priori definition of a structural relationship between the dependent and explanatory variables is not required; what is required instead is the selection/specification of the covariance structure of the independent variables to explain the interaction with the dependent variable. An added benefit of GP regression models is that an estimate on the prediction uncertainty is also available. It has been shown that GPs require less data and lead to more accurate uncertainty estimates compared to standard regression methods, like the ones typically used in the application of the International Performance Measurement and Verification Protocol (IPMVP).The proposed methodology has been applied using measurements obtained from a study building. The task at hand is the modelling and prediction of both the daily and hourly total building energy consumption. At each time resolution, we have identified (different) suitable explanatory variables and performed a sensitivity analysis to evaluate the contribution of each variable on the final accuracy of the model. Two sets of data are used: training data for constructing the regression model; and test data for evaluating the accuracy of the prediction, utilizing common statistical indices such as Mean Squared Error (MSE) and coefficient of determination (R2) to evaluate the quality of the predictions. The experiments performed indicate the importance of selecting proper independent variables for each task, since the quality of the prediction largely depends on the ability of the explanatory variables to describe the behaviour of the dependent variable. In addition, the prediction quality and robustness of the GP regression was evident in all our tests, which combined with the laborious-free tuning of the framework make this approach highly-attractive for the task." @default.
- W3110362480 created "2020-12-07" @default.
- W3110362480 creator A5017751830 @default.
- W3110362480 creator A5036988607 @default.
- W3110362480 date "2016-12-07" @default.
- W3110362480 modified "2023-09-26" @default.
- W3110362480 title "Modelling and prediction of buildings energy consumption using Machine Learning techniques" @default.
- W3110362480 hasPublicationYear "2016" @default.
- W3110362480 type Work @default.
- W3110362480 sameAs 3110362480 @default.
- W3110362480 citedByCount "0" @default.
- W3110362480 crossrefType "journal-article" @default.
- W3110362480 hasAuthorship W3110362480A5017751830 @default.
- W3110362480 hasAuthorship W3110362480A5036988607 @default.
- W3110362480 hasConcept C105795698 @default.
- W3110362480 hasConcept C111919701 @default.
- W3110362480 hasConcept C119599485 @default.
- W3110362480 hasConcept C119857082 @default.
- W3110362480 hasConcept C127413603 @default.
- W3110362480 hasConcept C132853815 @default.
- W3110362480 hasConcept C13736549 @default.
- W3110362480 hasConcept C139719470 @default.
- W3110362480 hasConcept C160331591 @default.
- W3110362480 hasConcept C162324750 @default.
- W3110362480 hasConcept C169549615 @default.
- W3110362480 hasConcept C170154142 @default.
- W3110362480 hasConcept C186370098 @default.
- W3110362480 hasConcept C18762648 @default.
- W3110362480 hasConcept C200601418 @default.
- W3110362480 hasConcept C26517878 @default.
- W3110362480 hasConcept C2742236 @default.
- W3110362480 hasConcept C2778348673 @default.
- W3110362480 hasConcept C2778368411 @default.
- W3110362480 hasConcept C2780165032 @default.
- W3110362480 hasConcept C2780331096 @default.
- W3110362480 hasConcept C33923547 @default.
- W3110362480 hasConcept C38652104 @default.
- W3110362480 hasConcept C41008148 @default.
- W3110362480 hasConcept C520301825 @default.
- W3110362480 hasConcept C66938386 @default.
- W3110362480 hasConcept C78519656 @default.
- W3110362480 hasConcept C98045186 @default.
- W3110362480 hasConceptScore W3110362480C105795698 @default.
- W3110362480 hasConceptScore W3110362480C111919701 @default.
- W3110362480 hasConceptScore W3110362480C119599485 @default.
- W3110362480 hasConceptScore W3110362480C119857082 @default.
- W3110362480 hasConceptScore W3110362480C127413603 @default.
- W3110362480 hasConceptScore W3110362480C132853815 @default.
- W3110362480 hasConceptScore W3110362480C13736549 @default.
- W3110362480 hasConceptScore W3110362480C139719470 @default.
- W3110362480 hasConceptScore W3110362480C160331591 @default.
- W3110362480 hasConceptScore W3110362480C162324750 @default.
- W3110362480 hasConceptScore W3110362480C169549615 @default.
- W3110362480 hasConceptScore W3110362480C170154142 @default.
- W3110362480 hasConceptScore W3110362480C186370098 @default.
- W3110362480 hasConceptScore W3110362480C18762648 @default.
- W3110362480 hasConceptScore W3110362480C200601418 @default.
- W3110362480 hasConceptScore W3110362480C26517878 @default.
- W3110362480 hasConceptScore W3110362480C2742236 @default.
- W3110362480 hasConceptScore W3110362480C2778348673 @default.
- W3110362480 hasConceptScore W3110362480C2778368411 @default.
- W3110362480 hasConceptScore W3110362480C2780165032 @default.
- W3110362480 hasConceptScore W3110362480C2780331096 @default.
- W3110362480 hasConceptScore W3110362480C33923547 @default.
- W3110362480 hasConceptScore W3110362480C38652104 @default.
- W3110362480 hasConceptScore W3110362480C41008148 @default.
- W3110362480 hasConceptScore W3110362480C520301825 @default.
- W3110362480 hasConceptScore W3110362480C66938386 @default.
- W3110362480 hasConceptScore W3110362480C78519656 @default.
- W3110362480 hasConceptScore W3110362480C98045186 @default.
- W3110362480 hasLocation W31103624801 @default.
- W3110362480 hasOpenAccess W3110362480 @default.
- W3110362480 hasPrimaryLocation W31103624801 @default.
- W3110362480 hasRelatedWork W1736880019 @default.
- W3110362480 hasRelatedWork W2086536376 @default.
- W3110362480 hasRelatedWork W2185768702 @default.
- W3110362480 hasRelatedWork W2735268057 @default.
- W3110362480 hasRelatedWork W2751234239 @default.
- W3110362480 hasRelatedWork W2777568715 @default.
- W3110362480 hasRelatedWork W2780048899 @default.
- W3110362480 hasRelatedWork W2792178685 @default.
- W3110362480 hasRelatedWork W2795636963 @default.
- W3110362480 hasRelatedWork W2797697220 @default.
- W3110362480 hasRelatedWork W2841568490 @default.
- W3110362480 hasRelatedWork W2904198841 @default.
- W3110362480 hasRelatedWork W2938880353 @default.
- W3110362480 hasRelatedWork W2998618342 @default.
- W3110362480 hasRelatedWork W3006156763 @default.
- W3110362480 hasRelatedWork W3016453002 @default.
- W3110362480 hasRelatedWork W3098336475 @default.
- W3110362480 hasRelatedWork W3105138264 @default.
- W3110362480 hasRelatedWork W3183567221 @default.
- W3110362480 hasRelatedWork W2328068301 @default.
- W3110362480 isParatext "false" @default.
- W3110362480 isRetracted "false" @default.
- W3110362480 magId "3110362480" @default.
- W3110362480 workType "article" @default.