Matches in SemOpenAlex for { <https://semopenalex.org/work/W3110411105> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W3110411105 abstract "Cardiovascular disease is a large worldwide healthcare issue; symptoms often present suddenly with minimal warning. The electrocardiogram (ECG) is a fast, simple and reliable method of evaluating the health of the heart, by measuring electrical activity recorded through electrodes placed on the skin. ECGs often need to be analyzed by a cardiologist, taking time which could be spent on improving patient care and outcomes. Because of this, automatic ECG classification systems using machine learning have been proposed, which can learn complex interactions between ECG features and use this to detect abnormalities. However, algorithms built for this purpose often fail to generalize well to unseen data, reporting initially impressive results which drop dramatically when applied to new environments. Additionally, machine learning algorithms suffer a black-box issue, in which it is difficult to determine how a decision has been made. This is vital for applications in healthcare, as clinicians need to be able to verify the process of evaluation in order to trust the algorithm. This paper proposes a method for visualizing model decisions across each class in the MIT-BIH arrhythmia dataset, using adapted saliency maps averaged across complete classes to determine what patterns are being learned. We do this by building two algorithms based on state-of-the-art models. This paper highlights how these maps can be used to find problems in the model which could be affecting generalizability and model performance. Comparing saliency maps across complete classes gives an overall impression of confounding variables or other biases in the model, unlike what would be highlighted when comparing saliency maps on an ECG-by-ECG basis." @default.
- W3110411105 created "2020-12-07" @default.
- W3110411105 creator A5036704435 @default.
- W3110411105 creator A5071842569 @default.
- W3110411105 creator A5082776788 @default.
- W3110411105 date "2020-10-01" @default.
- W3110411105 modified "2023-10-10" @default.
- W3110411105 title "Improving ECG Classification Interpretability using Saliency Maps" @default.
- W3110411105 cites W2039321135 @default.
- W3110411105 cites W2095409369 @default.
- W3110411105 cites W2599441709 @default.
- W3110411105 cites W2883817443 @default.
- W3110411105 cites W2884561390 @default.
- W3110411105 cites W2902644322 @default.
- W3110411105 cites W2979570803 @default.
- W3110411105 cites W2982580298 @default.
- W3110411105 cites W2987011834 @default.
- W3110411105 cites W2994793120 @default.
- W3110411105 cites W3008345048 @default.
- W3110411105 cites W3015702588 @default.
- W3110411105 cites W3081842178 @default.
- W3110411105 cites W3099085560 @default.
- W3110411105 cites W3103507112 @default.
- W3110411105 doi "https://doi.org/10.1109/bibe50027.2020.00114" @default.
- W3110411105 hasPublicationYear "2020" @default.
- W3110411105 type Work @default.
- W3110411105 sameAs 3110411105 @default.
- W3110411105 citedByCount "5" @default.
- W3110411105 countsByYear W31104111052021 @default.
- W3110411105 countsByYear W31104111052022 @default.
- W3110411105 countsByYear W31104111052023 @default.
- W3110411105 crossrefType "proceedings-article" @default.
- W3110411105 hasAuthorship W3110411105A5036704435 @default.
- W3110411105 hasAuthorship W3110411105A5071842569 @default.
- W3110411105 hasAuthorship W3110411105A5082776788 @default.
- W3110411105 hasBestOaLocation W31104111052 @default.
- W3110411105 hasConcept C105795698 @default.
- W3110411105 hasConcept C119857082 @default.
- W3110411105 hasConcept C124101348 @default.
- W3110411105 hasConcept C154945302 @default.
- W3110411105 hasConcept C22019652 @default.
- W3110411105 hasConcept C27158222 @default.
- W3110411105 hasConcept C2777212361 @default.
- W3110411105 hasConcept C2781067378 @default.
- W3110411105 hasConcept C33923547 @default.
- W3110411105 hasConcept C41008148 @default.
- W3110411105 hasConcept C50644808 @default.
- W3110411105 hasConceptScore W3110411105C105795698 @default.
- W3110411105 hasConceptScore W3110411105C119857082 @default.
- W3110411105 hasConceptScore W3110411105C124101348 @default.
- W3110411105 hasConceptScore W3110411105C154945302 @default.
- W3110411105 hasConceptScore W3110411105C22019652 @default.
- W3110411105 hasConceptScore W3110411105C27158222 @default.
- W3110411105 hasConceptScore W3110411105C2777212361 @default.
- W3110411105 hasConceptScore W3110411105C2781067378 @default.
- W3110411105 hasConceptScore W3110411105C33923547 @default.
- W3110411105 hasConceptScore W3110411105C41008148 @default.
- W3110411105 hasConceptScore W3110411105C50644808 @default.
- W3110411105 hasLocation W31104111051 @default.
- W3110411105 hasLocation W31104111052 @default.
- W3110411105 hasLocation W31104111053 @default.
- W3110411105 hasLocation W31104111054 @default.
- W3110411105 hasOpenAccess W3110411105 @default.
- W3110411105 hasPrimaryLocation W31104111051 @default.
- W3110411105 hasRelatedWork W1574414179 @default.
- W3110411105 hasRelatedWork W1986582023 @default.
- W3110411105 hasRelatedWork W2186333919 @default.
- W3110411105 hasRelatedWork W2883749686 @default.
- W3110411105 hasRelatedWork W2989932438 @default.
- W3110411105 hasRelatedWork W3161120485 @default.
- W3110411105 hasRelatedWork W4220972140 @default.
- W3110411105 hasRelatedWork W4315864862 @default.
- W3110411105 hasRelatedWork W4378220270 @default.
- W3110411105 hasRelatedWork W4387297750 @default.
- W3110411105 isParatext "false" @default.
- W3110411105 isRetracted "false" @default.
- W3110411105 magId "3110411105" @default.
- W3110411105 workType "article" @default.