Matches in SemOpenAlex for { <https://semopenalex.org/work/W3110446794> ?p ?o ?g. }
- W3110446794 endingPage "84" @default.
- W3110446794 startingPage "74" @default.
- W3110446794 abstract "Ventilation-induced tumour motion remains a challenge for the accuracy of proton therapy treatments in lung patients. We investigated the feasibility of using a 4D virtual CT (4D-vCT) approach based on deformable image registration (DIR) and motion-aware 4D CBCT reconstruction (MA-ROOSTER) to enable accurate daily proton dose calculation using a gantry-mounted CBCT scanner tailored to proton therapy. Ventilation correlated data of 10 breathing phases were acquired from a porcine ex-vivo functional lung phantom using CT and CBCT. 4D-vCTs were generated by (1) DIR of the mid-position 4D-CT to the mid-position 4D-CBCT (reconstructed with the MA-ROOSTER) using a diffeomorphic Morphons algorithm and (2) subsequent propagation of the obtained mid-position vCT to the individual 4D-CBCT phases. Proton therapy treatment planning was performed to evaluate dose calculation accuracy of the 4D-vCTs. A robust treatment plan delivering a nominal dose of 60 Gy was generated on the average intensity image of the 4D-CT for an approximated internal target volume (ITV). Dose distributions were then recalculated on individual phases of the 4D-CT and the 4D-vCT based on the optimized plan. Dose accumulation was performed for 4D-vCT and 4D-CT using DIR of each phase to the mid position, which was chosen as reference. Dose based on the 4D-vCT was then evaluated against the dose calculated on 4D-CT both, phase-by-phase as well as accumulated, by comparing dose volume histogram (DVH) values (Dmean, D2%, D98%, D95%) for the ITV, and by a 3D-gamma index analysis (global, 3%/3 mm, 5 Gy, 20 Gy and 30 Gy dose thresholds). Good agreement was found between the 4D-CT and 4D-vCT-based ITV-DVH curves. The relative differences ((CT-vCT)/CT) between accumulated values of ITV Dmean, D2%, D95% and D98% for the 4D-CT and 4D-vCT-based dose distributions were −0.2%, 0.0%, −0.1% and −0.1%, respectively. Phase specific values varied between −0.5% and 0.2%, −0.2% and 0.5%, −3.5% and 1.5%, and −5.7% and 2.3%. The relative difference of accumulated Dmean over the lungs was 2.3% and Dmean for the phases varied between −5.4% and 5.8%. The gamma pass-rates with 5 Gy, 20 Gy and 30 Gy thresholds for the accumulated doses were 96.7%, 99.6% and 99.9%, respectively. Phase-by-phase comparison yielded pass-rates between 86% and 97%, 88% and 98%, and 94% and 100%. Feasibility of the suggested 4D-vCT workflow using proton therapy specific imaging equipment was shown. Results indicate the potential of the method to be applied for daily 4D proton dose estimation." @default.
- W3110446794 created "2020-12-07" @default.
- W3110446794 creator A5000377815 @default.
- W3110446794 creator A5014931649 @default.
- W3110446794 creator A5023243761 @default.
- W3110446794 creator A5027114196 @default.
- W3110446794 creator A5038323479 @default.
- W3110446794 creator A5038480593 @default.
- W3110446794 creator A5050270794 @default.
- W3110446794 creator A5053172359 @default.
- W3110446794 creator A5060132103 @default.
- W3110446794 creator A5070669449 @default.
- W3110446794 creator A5071947725 @default.
- W3110446794 creator A5074507143 @default.
- W3110446794 creator A5083492285 @default.
- W3110446794 creator A5089792965 @default.
- W3110446794 creator A5091472392 @default.
- W3110446794 creator A5091631955 @default.
- W3110446794 date "2022-02-01" @default.
- W3110446794 modified "2023-10-17" @default.
- W3110446794 title "Anthropomorphic lung phantom based validation of in-room proton therapy 4D-CBCT image correction for dose calculation" @default.
- W3110446794 cites W1515384980 @default.
- W3110446794 cites W1846487275 @default.
- W3110446794 cites W1973896010 @default.
- W3110446794 cites W1999189079 @default.
- W3110446794 cites W1999613593 @default.
- W3110446794 cites W2002752499 @default.
- W3110446794 cites W2007579275 @default.
- W3110446794 cites W2012073793 @default.
- W3110446794 cites W2014621971 @default.
- W3110446794 cites W2015406587 @default.
- W3110446794 cites W2023499193 @default.
- W3110446794 cites W2031349621 @default.
- W3110446794 cites W2033839854 @default.
- W3110446794 cites W2037517514 @default.
- W3110446794 cites W2043193153 @default.
- W3110446794 cites W2049394478 @default.
- W3110446794 cites W2049691758 @default.
- W3110446794 cites W2062061488 @default.
- W3110446794 cites W2062644770 @default.
- W3110446794 cites W2063019627 @default.
- W3110446794 cites W2068550284 @default.
- W3110446794 cites W2068640565 @default.
- W3110446794 cites W2072548224 @default.
- W3110446794 cites W2077592626 @default.
- W3110446794 cites W2077747692 @default.
- W3110446794 cites W2078487508 @default.
- W3110446794 cites W2083866605 @default.
- W3110446794 cites W2090708833 @default.
- W3110446794 cites W2091775381 @default.
- W3110446794 cites W2093338140 @default.
- W3110446794 cites W2106467008 @default.
- W3110446794 cites W2111938309 @default.
- W3110446794 cites W2128804753 @default.
- W3110446794 cites W2133951117 @default.
- W3110446794 cites W2143112644 @default.
- W3110446794 cites W2145122414 @default.
- W3110446794 cites W2147008341 @default.
- W3110446794 cites W2154130617 @default.
- W3110446794 cites W2193910599 @default.
- W3110446794 cites W2255101814 @default.
- W3110446794 cites W2340676938 @default.
- W3110446794 cites W2513250393 @default.
- W3110446794 cites W2752794528 @default.
- W3110446794 cites W2795949031 @default.
- W3110446794 cites W2797460638 @default.
- W3110446794 cites W2896550271 @default.
- W3110446794 cites W2900537786 @default.
- W3110446794 cites W2901723531 @default.
- W3110446794 cites W2907953456 @default.
- W3110446794 cites W2947525860 @default.
- W3110446794 cites W2980506420 @default.
- W3110446794 cites W2981626545 @default.
- W3110446794 cites W3009114828 @default.
- W3110446794 doi "https://doi.org/10.1016/j.zemedi.2020.09.004" @default.
- W3110446794 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33248812" @default.
- W3110446794 hasPublicationYear "2022" @default.
- W3110446794 type Work @default.
- W3110446794 sameAs 3110446794 @default.
- W3110446794 citedByCount "6" @default.
- W3110446794 countsByYear W31104467942021 @default.
- W3110446794 countsByYear W31104467942022 @default.
- W3110446794 countsByYear W31104467942023 @default.
- W3110446794 crossrefType "journal-article" @default.
- W3110446794 hasAuthorship W3110446794A5000377815 @default.
- W3110446794 hasAuthorship W3110446794A5014931649 @default.
- W3110446794 hasAuthorship W3110446794A5023243761 @default.
- W3110446794 hasAuthorship W3110446794A5027114196 @default.
- W3110446794 hasAuthorship W3110446794A5038323479 @default.
- W3110446794 hasAuthorship W3110446794A5038480593 @default.
- W3110446794 hasAuthorship W3110446794A5050270794 @default.
- W3110446794 hasAuthorship W3110446794A5053172359 @default.
- W3110446794 hasAuthorship W3110446794A5060132103 @default.
- W3110446794 hasAuthorship W3110446794A5070669449 @default.
- W3110446794 hasAuthorship W3110446794A5071947725 @default.
- W3110446794 hasAuthorship W3110446794A5074507143 @default.
- W3110446794 hasAuthorship W3110446794A5083492285 @default.
- W3110446794 hasAuthorship W3110446794A5089792965 @default.