Matches in SemOpenAlex for { <https://semopenalex.org/work/W3110648344> ?p ?o ?g. }
- W3110648344 endingPage "39" @default.
- W3110648344 startingPage "27" @default.
- W3110648344 abstract "Software design is one of the core concepts in software engineering. This covers insights and intuitions of software evolution, reliability, and maintainability. Effective software design facilitates software reliability and better quality management during development which reduces software development cost. Therefore, it is required to detect and maintain these issues earlier. Class complexity is one of the ways of detecting software quality. The objective of this paper is to predict class complexity from source code metrics using machine learning (ML) approaches and compare the performance of the approaches. In order to do that, we collect ten popular and quality maintained open source repositories and extract 18 source code metrics that relate to complexity for class-level analysis. First, we apply statistical correlation to find out the source code metrics that impact most on class complexity. Second, we apply five alternative ML techniques to build complexity predictors and compare the performances. The results report that the following source code metrics: Depth inheritance tree (DIT), response for class (RFC), weighted method count (WMC), lines of code (LOC), and coupling between objects (CBO) have the most impact on class complexity. Also, we evaluate the performance of the techniques, and results show that random forest (RF) significantly improves accuracy without providing additional false negative or false positive that work as false alarms in complexity prediction." @default.
- W3110648344 created "2020-12-21" @default.
- W3110648344 creator A5002368365 @default.
- W3110648344 creator A5009885123 @default.
- W3110648344 creator A5071490553 @default.
- W3110648344 creator A5084130125 @default.
- W3110648344 creator A5087150727 @default.
- W3110648344 date "2020-12-17" @default.
- W3110648344 modified "2023-09-23" @default.
- W3110648344 title "Performance Analysis of Machine Learning Approaches in Software Complexity Prediction" @default.
- W3110648344 cites W1954775015 @default.
- W3110648344 cites W1966682079 @default.
- W3110648344 cites W1975599245 @default.
- W3110648344 cites W1993005299 @default.
- W3110648344 cites W2004758929 @default.
- W3110648344 cites W2055765785 @default.
- W3110648344 cites W2063770056 @default.
- W3110648344 cites W2083881076 @default.
- W3110648344 cites W2094266213 @default.
- W3110648344 cites W2107643286 @default.
- W3110648344 cites W2244669237 @default.
- W3110648344 cites W2409558506 @default.
- W3110648344 cites W2441881010 @default.
- W3110648344 cites W2514173981 @default.
- W3110648344 cites W2964067326 @default.
- W3110648344 cites W2967556797 @default.
- W3110648344 cites W2981446648 @default.
- W3110648344 cites W2990954032 @default.
- W3110648344 cites W3097969440 @default.
- W3110648344 cites W4249777822 @default.
- W3110648344 doi "https://doi.org/10.1007/978-981-33-4673-4_3" @default.
- W3110648344 hasPublicationYear "2020" @default.
- W3110648344 type Work @default.
- W3110648344 sameAs 3110648344 @default.
- W3110648344 citedByCount "3" @default.
- W3110648344 countsByYear W31106483442021 @default.
- W3110648344 countsByYear W31106483442022 @default.
- W3110648344 countsByYear W31106483442023 @default.
- W3110648344 crossrefType "book-chapter" @default.
- W3110648344 hasAuthorship W3110648344A5002368365 @default.
- W3110648344 hasAuthorship W3110648344A5009885123 @default.
- W3110648344 hasAuthorship W3110648344A5071490553 @default.
- W3110648344 hasAuthorship W3110648344A5084130125 @default.
- W3110648344 hasAuthorship W3110648344A5087150727 @default.
- W3110648344 hasConcept C104317684 @default.
- W3110648344 hasConcept C115903868 @default.
- W3110648344 hasConcept C117447612 @default.
- W3110648344 hasConcept C119857082 @default.
- W3110648344 hasConcept C121332964 @default.
- W3110648344 hasConcept C124101348 @default.
- W3110648344 hasConcept C127413603 @default.
- W3110648344 hasConcept C137287247 @default.
- W3110648344 hasConcept C154945302 @default.
- W3110648344 hasConcept C160713754 @default.
- W3110648344 hasConcept C163258240 @default.
- W3110648344 hasConcept C185592680 @default.
- W3110648344 hasConcept C186846655 @default.
- W3110648344 hasConcept C199360897 @default.
- W3110648344 hasConcept C200601418 @default.
- W3110648344 hasConcept C201515116 @default.
- W3110648344 hasConcept C2777212361 @default.
- W3110648344 hasConcept C2777904410 @default.
- W3110648344 hasConcept C2780902518 @default.
- W3110648344 hasConcept C41008148 @default.
- W3110648344 hasConcept C43126263 @default.
- W3110648344 hasConcept C43214815 @default.
- W3110648344 hasConcept C529173508 @default.
- W3110648344 hasConcept C55493867 @default.
- W3110648344 hasConcept C62520636 @default.
- W3110648344 hasConcept C66429209 @default.
- W3110648344 hasConcept C82214349 @default.
- W3110648344 hasConceptScore W3110648344C104317684 @default.
- W3110648344 hasConceptScore W3110648344C115903868 @default.
- W3110648344 hasConceptScore W3110648344C117447612 @default.
- W3110648344 hasConceptScore W3110648344C119857082 @default.
- W3110648344 hasConceptScore W3110648344C121332964 @default.
- W3110648344 hasConceptScore W3110648344C124101348 @default.
- W3110648344 hasConceptScore W3110648344C127413603 @default.
- W3110648344 hasConceptScore W3110648344C137287247 @default.
- W3110648344 hasConceptScore W3110648344C154945302 @default.
- W3110648344 hasConceptScore W3110648344C160713754 @default.
- W3110648344 hasConceptScore W3110648344C163258240 @default.
- W3110648344 hasConceptScore W3110648344C185592680 @default.
- W3110648344 hasConceptScore W3110648344C186846655 @default.
- W3110648344 hasConceptScore W3110648344C199360897 @default.
- W3110648344 hasConceptScore W3110648344C200601418 @default.
- W3110648344 hasConceptScore W3110648344C201515116 @default.
- W3110648344 hasConceptScore W3110648344C2777212361 @default.
- W3110648344 hasConceptScore W3110648344C2777904410 @default.
- W3110648344 hasConceptScore W3110648344C2780902518 @default.
- W3110648344 hasConceptScore W3110648344C41008148 @default.
- W3110648344 hasConceptScore W3110648344C43126263 @default.
- W3110648344 hasConceptScore W3110648344C43214815 @default.
- W3110648344 hasConceptScore W3110648344C529173508 @default.
- W3110648344 hasConceptScore W3110648344C55493867 @default.
- W3110648344 hasConceptScore W3110648344C62520636 @default.
- W3110648344 hasConceptScore W3110648344C66429209 @default.
- W3110648344 hasConceptScore W3110648344C82214349 @default.