Matches in SemOpenAlex for { <https://semopenalex.org/work/W3110661141> ?p ?o ?g. }
- W3110661141 endingPage "225257" @default.
- W3110661141 startingPage "225240" @default.
- W3110661141 abstract "Tensors and multiway analysis aim to explore the relationships between the variables used to represent the data and find a summarization of the data with models of reduced dimensionality. However, although in this context a great attention was devoted to this problem, dimension reduction of high-order tensors remains a challenge. The aim of this article is to provide a nonlinear dimensionality reduction approach, named principal tensor embedding (PTE), for unsupervised tensor learning, that is able to derive an explicit nonlinear model of data. As in the standard manifold learning (ML) technique, it assumes multidimensional data lie close to a low-dimensional manifold embedded in a high-dimensional space. On the basis of this assumption a local parametrization of data that accurately captures its local geometry is derived. From this mathematical framework a nonlinear stochastic model of data that depends on a reduced set of latent variables is obtained. In this way the initial problem of unsupervised learning is reduced to the regression of a nonlinear input-output function, i.e. a supervised learning problem. Extensive experiments on several tensor datasets demonstrate that the proposed ML approach gives competitive performance when compared with other techniques used for data reconstruction and classification." @default.
- W3110661141 created "2020-12-21" @default.
- W3110661141 creator A5053388611 @default.
- W3110661141 creator A5074996129 @default.
- W3110661141 creator A5083197659 @default.
- W3110661141 date "2020-01-01" @default.
- W3110661141 modified "2023-09-24" @default.
- W3110661141 title "Principal Tensor Embedding for Unsupervised Tensor Learning" @default.
- W3110661141 cites W1577635650 @default.
- W3110661141 cites W1578196132 @default.
- W3110661141 cites W1631454559 @default.
- W3110661141 cites W1876688746 @default.
- W3110661141 cites W1970176196 @default.
- W3110661141 cites W1974393980 @default.
- W3110661141 cites W1978376511 @default.
- W3110661141 cites W1978501336 @default.
- W3110661141 cites W1980456161 @default.
- W3110661141 cites W1982851590 @default.
- W3110661141 cites W1988881859 @default.
- W3110661141 cites W2001141328 @default.
- W3110661141 cites W2003767009 @default.
- W3110661141 cites W2003860694 @default.
- W3110661141 cites W2006656670 @default.
- W3110661141 cites W2010456906 @default.
- W3110661141 cites W2011832962 @default.
- W3110661141 cites W2013912476 @default.
- W3110661141 cites W2024165284 @default.
- W3110661141 cites W2028569884 @default.
- W3110661141 cites W2030876210 @default.
- W3110661141 cites W2031058636 @default.
- W3110661141 cites W2038784978 @default.
- W3110661141 cites W2042041679 @default.
- W3110661141 cites W2053186076 @default.
- W3110661141 cites W2057032881 @default.
- W3110661141 cites W2064514722 @default.
- W3110661141 cites W2066271937 @default.
- W3110661141 cites W2070964041 @default.
- W3110661141 cites W2072509929 @default.
- W3110661141 cites W2077776048 @default.
- W3110661141 cites W2079598971 @default.
- W3110661141 cites W2090341258 @default.
- W3110661141 cites W2100567442 @default.
- W3110661141 cites W2102544846 @default.
- W3110661141 cites W2103560185 @default.
- W3110661141 cites W2104253679 @default.
- W3110661141 cites W2106210113 @default.
- W3110661141 cites W2111411921 @default.
- W3110661141 cites W2124728898 @default.
- W3110661141 cites W2124812588 @default.
- W3110661141 cites W2127369782 @default.
- W3110661141 cites W2134251598 @default.
- W3110661141 cites W2136002544 @default.
- W3110661141 cites W2140862024 @default.
- W3110661141 cites W2141172981 @default.
- W3110661141 cites W2141200867 @default.
- W3110661141 cites W2143583134 @default.
- W3110661141 cites W2143885292 @default.
- W3110661141 cites W2144487363 @default.
- W3110661141 cites W2146634731 @default.
- W3110661141 cites W2149544245 @default.
- W3110661141 cites W2151084831 @default.
- W3110661141 cites W2171142557 @default.
- W3110661141 cites W2202991231 @default.
- W3110661141 cites W2283370450 @default.
- W3110661141 cites W2345068797 @default.
- W3110661141 cites W2403175639 @default.
- W3110661141 cites W2412753679 @default.
- W3110661141 cites W2469230926 @default.
- W3110661141 cites W2475098969 @default.
- W3110661141 cites W2533513937 @default.
- W3110661141 cites W2584613988 @default.
- W3110661141 cites W2611015177 @default.
- W3110661141 cites W2781628627 @default.
- W3110661141 cites W2790863173 @default.
- W3110661141 cites W2794295488 @default.
- W3110661141 cites W2899473684 @default.
- W3110661141 cites W2913289081 @default.
- W3110661141 cites W2916117803 @default.
- W3110661141 cites W2931531042 @default.
- W3110661141 cites W2963368983 @default.
- W3110661141 cites W2963472624 @default.
- W3110661141 cites W2963515132 @default.
- W3110661141 cites W2983980479 @default.
- W3110661141 cites W4229749918 @default.
- W3110661141 cites W4238519965 @default.
- W3110661141 doi "https://doi.org/10.1109/access.2020.3044954" @default.
- W3110661141 hasPublicationYear "2020" @default.
- W3110661141 type Work @default.
- W3110661141 sameAs 3110661141 @default.
- W3110661141 citedByCount "1" @default.
- W3110661141 countsByYear W31106611412022 @default.
- W3110661141 crossrefType "journal-article" @default.
- W3110661141 hasAuthorship W3110661141A5053388611 @default.
- W3110661141 hasAuthorship W3110661141A5074996129 @default.
- W3110661141 hasAuthorship W3110661141A5083197659 @default.
- W3110661141 hasBestOaLocation W31106611411 @default.
- W3110661141 hasConcept C111919701 @default.
- W3110661141 hasConcept C134306372 @default.