Matches in SemOpenAlex for { <https://semopenalex.org/work/W3110675476> ?p ?o ?g. }
- W3110675476 endingPage "e20597" @default.
- W3110675476 startingPage "e20597" @default.
- W3110675476 abstract "Background A lifelogs-based wellness index (LWI) is a function for calculating wellness scores based on health behavior lifelogs (eg, daily walking steps and sleep times collected via a smartwatch). A wellness score intuitively shows the users of smart wellness services the overall condition of their health behaviors. LWI development includes estimation (ie, estimating coefficients in LWI with data). A panel data set comprising health behavior lifelogs allows LWI estimation to control for unobserved variables, thereby resulting in less bias. However, these data sets typically have missing data due to events that occur in daily life (eg, smart devices stop collecting data when batteries are depleted), which can introduce biases into LWI coefficients. Thus, the appropriate choice of method to handle missing data is important for reducing biases in LWI estimations with panel data. However, there is a lack of research in this area. Objective This study aims to identify a suitable missing-data handling method for LWI estimation with panel data. Methods Listwise deletion, mean imputation, expectation maximization–based multiple imputation, predictive-mean matching–based multiple imputation, k-nearest neighbors–based imputation, and low-rank approximation–based imputation were comparatively evaluated by simulating an existing case of LWI development. A panel data set comprising health behavior lifelogs of 41 college students over 4 weeks was transformed into a reference data set without any missing data. Then, 200 simulated data sets were generated by randomly introducing missing data at proportions from 1% to 80%. The missing-data handling methods were each applied to transform the simulated data sets into complete data sets, and coefficients in a linear LWI were estimated for each complete data set. For each proportion for each method, a bias measure was calculated by comparing the estimated coefficient values with values estimated from the reference data set. Results Methods performed differently depending on the proportion of missing data. For 1% to 30% proportions, low-rank approximation–based imputation, predictive-mean matching–based multiple imputation, and expectation maximization–based multiple imputation were superior. For 31% to 60% proportions, low-rank approximation–based imputation and predictive-mean matching–based multiple imputation performed best. For over 60% proportions, only low-rank approximation–based imputation performed acceptably. Conclusions Low-rank approximation–based imputation was the best of the 6 data-handling methods regardless of the proportion of missing data. This superiority is generalizable to other panel data sets comprising health behavior lifelogs given their verified low-rank nature, for which low-rank approximation–based imputation is known to perform effectively. This result will guide missing-data handling in reducing coefficient biases in new development cases of linear LWIs with panel data." @default.
- W3110675476 created "2020-12-21" @default.
- W3110675476 creator A5005081871 @default.
- W3110675476 creator A5017077151 @default.
- W3110675476 date "2020-12-17" @default.
- W3110675476 modified "2023-09-26" @default.
- W3110675476 title "Missing-Data Handling Methods for Lifelogs-Based Wellness Index Estimation: Comparative Analysis With Panel Data" @default.
- W3110675476 cites W1822348759 @default.
- W3110675476 cites W1950629566 @default.
- W3110675476 cites W1974437138 @default.
- W3110675476 cites W2031668066 @default.
- W3110675476 cites W2047071281 @default.
- W3110675476 cites W2051930493 @default.
- W3110675476 cites W2058128280 @default.
- W3110675476 cites W2062058099 @default.
- W3110675476 cites W2065974896 @default.
- W3110675476 cites W2084745075 @default.
- W3110675476 cites W2102895650 @default.
- W3110675476 cites W2115098571 @default.
- W3110675476 cites W2118502261 @default.
- W3110675476 cites W2133025798 @default.
- W3110675476 cites W2139075905 @default.
- W3110675476 cites W2141922524 @default.
- W3110675476 cites W2145132429 @default.
- W3110675476 cites W2145561180 @default.
- W3110675476 cites W2155046404 @default.
- W3110675476 cites W2162387820 @default.
- W3110675476 cites W2235784637 @default.
- W3110675476 cites W2259270470 @default.
- W3110675476 cites W2347096148 @default.
- W3110675476 cites W2382519751 @default.
- W3110675476 cites W2566762595 @default.
- W3110675476 cites W2596601702 @default.
- W3110675476 cites W2611328865 @default.
- W3110675476 cites W2745166901 @default.
- W3110675476 cites W2767184408 @default.
- W3110675476 cites W2789943449 @default.
- W3110675476 cites W2889489337 @default.
- W3110675476 cites W2903115227 @default.
- W3110675476 cites W2906528356 @default.
- W3110675476 cites W2922315794 @default.
- W3110675476 cites W2962769133 @default.
- W3110675476 cites W3124433624 @default.
- W3110675476 cites W4243369765 @default.
- W3110675476 cites W4244928213 @default.
- W3110675476 cites W4245588985 @default.
- W3110675476 cites W4300187280 @default.
- W3110675476 cites W59413458 @default.
- W3110675476 doi "https://doi.org/10.2196/20597" @default.
- W3110675476 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7775200" @default.
- W3110675476 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33331831" @default.
- W3110675476 hasPublicationYear "2020" @default.
- W3110675476 type Work @default.
- W3110675476 sameAs 3110675476 @default.
- W3110675476 citedByCount "3" @default.
- W3110675476 countsByYear W31106754762021 @default.
- W3110675476 countsByYear W31106754762022 @default.
- W3110675476 crossrefType "journal-article" @default.
- W3110675476 hasAuthorship W3110675476A5005081871 @default.
- W3110675476 hasAuthorship W3110675476A5017077151 @default.
- W3110675476 hasBestOaLocation W31106754761 @default.
- W3110675476 hasConcept C105795698 @default.
- W3110675476 hasConcept C119857082 @default.
- W3110675476 hasConcept C124101348 @default.
- W3110675476 hasConcept C154945302 @default.
- W3110675476 hasConcept C33923547 @default.
- W3110675476 hasConcept C41008148 @default.
- W3110675476 hasConcept C58041806 @default.
- W3110675476 hasConcept C58489278 @default.
- W3110675476 hasConcept C9357733 @default.
- W3110675476 hasConceptScore W3110675476C105795698 @default.
- W3110675476 hasConceptScore W3110675476C119857082 @default.
- W3110675476 hasConceptScore W3110675476C124101348 @default.
- W3110675476 hasConceptScore W3110675476C154945302 @default.
- W3110675476 hasConceptScore W3110675476C33923547 @default.
- W3110675476 hasConceptScore W3110675476C41008148 @default.
- W3110675476 hasConceptScore W3110675476C58041806 @default.
- W3110675476 hasConceptScore W3110675476C58489278 @default.
- W3110675476 hasConceptScore W3110675476C9357733 @default.
- W3110675476 hasIssue "12" @default.
- W3110675476 hasLocation W31106754761 @default.
- W3110675476 hasLocation W31106754762 @default.
- W3110675476 hasLocation W31106754763 @default.
- W3110675476 hasOpenAccess W3110675476 @default.
- W3110675476 hasPrimaryLocation W31106754761 @default.
- W3110675476 hasRelatedWork W186161899 @default.
- W3110675476 hasRelatedWork W2074587066 @default.
- W3110675476 hasRelatedWork W2403529470 @default.
- W3110675476 hasRelatedWork W2906862824 @default.
- W3110675476 hasRelatedWork W2938680702 @default.
- W3110675476 hasRelatedWork W2964631039 @default.
- W3110675476 hasRelatedWork W2997516437 @default.
- W3110675476 hasRelatedWork W3009660772 @default.
- W3110675476 hasRelatedWork W3011484504 @default.
- W3110675476 hasRelatedWork W3216372614 @default.
- W3110675476 hasVolume "8" @default.
- W3110675476 isParatext "false" @default.
- W3110675476 isRetracted "false" @default.