Matches in SemOpenAlex for { <https://semopenalex.org/work/W3110719151> ?p ?o ?g. }
- W3110719151 endingPage "6177" @default.
- W3110719151 startingPage "6167" @default.
- W3110719151 abstract "Protecting enterprise information security is a main task of Internet of Things system. The interaction between employees in same enterprise is based on level structures. So it is important to discover levels of employees for urban developers to protect enterprise information security. In this article, we propose a level discovery method for employees (LDME) from the records of employees using mobile phones named LDME. The call behavior between employees are expressed as several weighted directed complex networks, LDME represent edges in these weighted directed complex networks as vectors to exact both direction and weight information of the edges. Combined with supervised learning method, LDME prune these weighted directed networks into directed acyclic networks, which accurately reflect levels information between employees. At the same time, LDME mines the maximal frequent directed acyclic substructure from the above directed acyclic networks with efficient way, which indicate the stable levels information. We use real data to verify the performance of our method. The experimental result shows that the level of employees mined with our method is accurate and stable." @default.
- W3110719151 created "2020-12-21" @default.
- W3110719151 creator A5022309697 @default.
- W3110719151 creator A5043096476 @default.
- W3110719151 creator A5064526279 @default.
- W3110719151 creator A5083330935 @default.
- W3110719151 date "2021-04-15" @default.
- W3110719151 modified "2023-09-26" @default.
- W3110719151 title "AI and Machine Learning for Industrial Security With Level Discovery Method" @default.
- W3110719151 cites W1556758605 @default.
- W3110719151 cites W1942786204 @default.
- W3110719151 cites W1973723602 @default.
- W3110719151 cites W1973815317 @default.
- W3110719151 cites W1999153225 @default.
- W3110719151 cites W2001150544 @default.
- W3110719151 cites W2007444087 @default.
- W3110719151 cites W2008164459 @default.
- W3110719151 cites W2018045523 @default.
- W3110719151 cites W2025452929 @default.
- W3110719151 cites W2037705937 @default.
- W3110719151 cites W2083059234 @default.
- W3110719151 cites W2091748931 @default.
- W3110719151 cites W2101156500 @default.
- W3110719151 cites W2122906087 @default.
- W3110719151 cites W2154454189 @default.
- W3110719151 cites W2162481448 @default.
- W3110719151 cites W2170726034 @default.
- W3110719151 cites W2291775447 @default.
- W3110719151 cites W2335160658 @default.
- W3110719151 cites W2605259433 @default.
- W3110719151 cites W2624147939 @default.
- W3110719151 cites W2744316982 @default.
- W3110719151 cites W2747987831 @default.
- W3110719151 cites W2790666972 @default.
- W3110719151 cites W2803872014 @default.
- W3110719151 cites W2804452823 @default.
- W3110719151 cites W2908901233 @default.
- W3110719151 cites W2931991156 @default.
- W3110719151 cites W2944039629 @default.
- W3110719151 cites W2947620500 @default.
- W3110719151 cites W2972079061 @default.
- W3110719151 cites W2986858483 @default.
- W3110719151 cites W2996611683 @default.
- W3110719151 cites W2998851828 @default.
- W3110719151 cites W2999034408 @default.
- W3110719151 cites W2999792203 @default.
- W3110719151 cites W3014847672 @default.
- W3110719151 cites W3026534984 @default.
- W3110719151 cites W3033202731 @default.
- W3110719151 cites W3083630455 @default.
- W3110719151 cites W3089286103 @default.
- W3110719151 doi "https://doi.org/10.1109/jiot.2020.3036695" @default.
- W3110719151 hasPublicationYear "2021" @default.
- W3110719151 type Work @default.
- W3110719151 sameAs 3110719151 @default.
- W3110719151 citedByCount "0" @default.
- W3110719151 crossrefType "journal-article" @default.
- W3110719151 hasAuthorship W3110719151A5022309697 @default.
- W3110719151 hasAuthorship W3110719151A5043096476 @default.
- W3110719151 hasAuthorship W3110719151A5064526279 @default.
- W3110719151 hasAuthorship W3110719151A5083330935 @default.
- W3110719151 hasConcept C11413529 @default.
- W3110719151 hasConcept C124101348 @default.
- W3110719151 hasConcept C127413603 @default.
- W3110719151 hasConcept C146380142 @default.
- W3110719151 hasConcept C154945302 @default.
- W3110719151 hasConcept C201995342 @default.
- W3110719151 hasConcept C2780451532 @default.
- W3110719151 hasConcept C38652104 @default.
- W3110719151 hasConcept C41008148 @default.
- W3110719151 hasConcept C527648132 @default.
- W3110719151 hasConcept C74197172 @default.
- W3110719151 hasConceptScore W3110719151C11413529 @default.
- W3110719151 hasConceptScore W3110719151C124101348 @default.
- W3110719151 hasConceptScore W3110719151C127413603 @default.
- W3110719151 hasConceptScore W3110719151C146380142 @default.
- W3110719151 hasConceptScore W3110719151C154945302 @default.
- W3110719151 hasConceptScore W3110719151C201995342 @default.
- W3110719151 hasConceptScore W3110719151C2780451532 @default.
- W3110719151 hasConceptScore W3110719151C38652104 @default.
- W3110719151 hasConceptScore W3110719151C41008148 @default.
- W3110719151 hasConceptScore W3110719151C527648132 @default.
- W3110719151 hasConceptScore W3110719151C74197172 @default.
- W3110719151 hasFunder F4320321001 @default.
- W3110719151 hasIssue "8" @default.
- W3110719151 hasLocation W31107191511 @default.
- W3110719151 hasOpenAccess W3110719151 @default.
- W3110719151 hasPrimaryLocation W31107191511 @default.
- W3110719151 hasRelatedWork W1507754474 @default.
- W3110719151 hasRelatedWork W1607472309 @default.
- W3110719151 hasRelatedWork W2020100607 @default.
- W3110719151 hasRelatedWork W2081647779 @default.
- W3110719151 hasRelatedWork W2146569528 @default.
- W3110719151 hasRelatedWork W2370597599 @default.
- W3110719151 hasRelatedWork W2918095851 @default.
- W3110719151 hasRelatedWork W3026542295 @default.
- W3110719151 hasRelatedWork W3128051602 @default.
- W3110719151 hasRelatedWork W3217387898 @default.