Matches in SemOpenAlex for { <https://semopenalex.org/work/W3110726616> ?p ?o ?g. }
- W3110726616 endingPage "4095" @default.
- W3110726616 startingPage "4095" @default.
- W3110726616 abstract "Extreme rainfall can be a catastrophic trigger for natural disaster events at urban scales. However, there remains large uncertainties as to how satellite precipitation can identify these triggers at a city scale. The objective of this study is to evaluate the potential of satellite-based rainfall estimates to monitor natural disaster triggers in urban areas. Rainfall estimates from the Global Precipitation Measurement (GPM) mission are evaluated over the city of Rio de Janeiro, Brazil, where urban floods and landslides occur periodically as a result of extreme rainfall events. Two rainfall products derived from the Integrated Multi-satellite Retrievals for GPM (IMERG), the IMERG Early and IMERG Final products, are integrated into the Noah Multi-Parameterization (Noah-MP) land surface model in order to simulate the spatial and temporal dynamics of two key hydrometeorological disaster triggers across the city over the wet seasons during 2001–2019. Here, total runoff (TR) and rootzone soil moisture (RZSM) are considered as flood and landslide triggers, respectively. Ground-based observations at 33 pluviometric stations are interpolated, and the resulting rainfall fields are used in an in-situ precipitation-based simulation, considered as the reference for evaluating the IMERG-driven simulations. The evaluation is performed during the wet seasons (November-April), when average rainfall over the city is 4.4 mm/day. Results show that IMERG products show low spatial variability at the city scale, generally overestimate rainfall rates by 12–35%, and impacts on TR and RZSM vary spatially mostly as a function of land cover and soil types. Results based on statistical and categorical metrics show that IMERG skill in detecting extreme events is moderate, with IMERG Final performing slightly better for most metrics. By analyzing two recent storms, we observe that IMERG detects mostly hourly extreme events, but underestimates rainfall rates, resulting in underestimated TR and RZSM. An evaluation of normalized time series using percentiles shows that both satellite products have significantly improved skill in detecting extreme events when compared to the evaluation using absolute values, indicating that IMERG precipitation could be potentially used as a predictor for natural disasters in urban areas." @default.
- W3110726616 created "2020-12-21" @default.
- W3110726616 creator A5010385276 @default.
- W3110726616 creator A5033628188 @default.
- W3110726616 creator A5065221043 @default.
- W3110726616 creator A5070455770 @default.
- W3110726616 creator A5077745420 @default.
- W3110726616 creator A5090604310 @default.
- W3110726616 date "2020-12-15" @default.
- W3110726616 modified "2023-10-10" @default.
- W3110726616 title "Potential of GPM IMERG Precipitation Estimates to Monitor Natural Disaster Triggers in Urban Areas: The Case of Rio de Janeiro, Brazil" @default.
- W3110726616 cites W1562836990 @default.
- W3110726616 cites W1587229523 @default.
- W3110726616 cites W1604958445 @default.
- W3110726616 cites W1771314880 @default.
- W3110726616 cites W1946615015 @default.
- W3110726616 cites W1962411318 @default.
- W3110726616 cites W1974694745 @default.
- W3110726616 cites W1978901367 @default.
- W3110726616 cites W1990874001 @default.
- W3110726616 cites W1992023913 @default.
- W3110726616 cites W1995622703 @default.
- W3110726616 cites W2000330466 @default.
- W3110726616 cites W2001317094 @default.
- W3110726616 cites W2020792444 @default.
- W3110726616 cites W2037385122 @default.
- W3110726616 cites W2038314842 @default.
- W3110726616 cites W2038548348 @default.
- W3110726616 cites W2057414167 @default.
- W3110726616 cites W2073298425 @default.
- W3110726616 cites W2087505430 @default.
- W3110726616 cites W2100560964 @default.
- W3110726616 cites W2101225175 @default.
- W3110726616 cites W2101377177 @default.
- W3110726616 cites W2104149972 @default.
- W3110726616 cites W2121885753 @default.
- W3110726616 cites W2134007236 @default.
- W3110726616 cites W2135902443 @default.
- W3110726616 cites W2149799438 @default.
- W3110726616 cites W2160741281 @default.
- W3110726616 cites W2223787332 @default.
- W3110726616 cites W2285509402 @default.
- W3110726616 cites W2291317328 @default.
- W3110726616 cites W2330509786 @default.
- W3110726616 cites W2530449981 @default.
- W3110726616 cites W2560821854 @default.
- W3110726616 cites W2560840182 @default.
- W3110726616 cites W2563664909 @default.
- W3110726616 cites W2567077254 @default.
- W3110726616 cites W2578593690 @default.
- W3110726616 cites W262372857 @default.
- W3110726616 cites W2624410365 @default.
- W3110726616 cites W2673798664 @default.
- W3110726616 cites W2736304506 @default.
- W3110726616 cites W2767968188 @default.
- W3110726616 cites W2783166613 @default.
- W3110726616 cites W2790113555 @default.
- W3110726616 cites W2792175537 @default.
- W3110726616 cites W2792576728 @default.
- W3110726616 cites W2800881656 @default.
- W3110726616 cites W2801322915 @default.
- W3110726616 cites W2806816730 @default.
- W3110726616 cites W2843187870 @default.
- W3110726616 cites W2884692306 @default.
- W3110726616 cites W2887805470 @default.
- W3110726616 cites W2907786478 @default.
- W3110726616 cites W2908034559 @default.
- W3110726616 cites W2914637451 @default.
- W3110726616 cites W2914812700 @default.
- W3110726616 cites W2923717973 @default.
- W3110726616 cites W2944055907 @default.
- W3110726616 cites W2969940692 @default.
- W3110726616 cites W2982569617 @default.
- W3110726616 cites W2990661042 @default.
- W3110726616 cites W3008894482 @default.
- W3110726616 cites W4230953156 @default.
- W3110726616 doi "https://doi.org/10.3390/rs12244095" @default.
- W3110726616 hasPublicationYear "2020" @default.
- W3110726616 type Work @default.
- W3110726616 sameAs 3110726616 @default.
- W3110726616 citedByCount "19" @default.
- W3110726616 countsByYear W31107266162021 @default.
- W3110726616 countsByYear W31107266162022 @default.
- W3110726616 countsByYear W31107266162023 @default.
- W3110726616 crossrefType "journal-article" @default.
- W3110726616 hasAuthorship W3110726616A5010385276 @default.
- W3110726616 hasAuthorship W3110726616A5033628188 @default.
- W3110726616 hasAuthorship W3110726616A5065221043 @default.
- W3110726616 hasAuthorship W3110726616A5070455770 @default.
- W3110726616 hasAuthorship W3110726616A5077745420 @default.
- W3110726616 hasAuthorship W3110726616A5090604310 @default.
- W3110726616 hasBestOaLocation W31107266161 @default.
- W3110726616 hasConcept C100725284 @default.
- W3110726616 hasConcept C107054158 @default.
- W3110726616 hasConcept C127313418 @default.
- W3110726616 hasConcept C127413603 @default.
- W3110726616 hasConcept C146978453 @default.
- W3110726616 hasConcept C153294291 @default.