Matches in SemOpenAlex for { <https://semopenalex.org/work/W3110800647> ?p ?o ?g. }
- W3110800647 endingPage "e25442" @default.
- W3110800647 startingPage "e25442" @default.
- W3110800647 abstract "Background COVID-19, which is accompanied by acute respiratory distress, multiple organ failure, and death, has spread worldwide much faster than previously thought. However, at present, it has limited treatments. Objective To overcome this issue, we developed an artificial intelligence (AI) model of COVID-19, named EDRnet (ensemble learning model based on deep neural network and random forest models), to predict in-hospital mortality using a routine blood sample at the time of hospital admission. Methods We selected 28 blood biomarkers and used the age and gender information of patients as model inputs. To improve the mortality prediction, we adopted an ensemble approach combining deep neural network and random forest models. We trained our model with a database of blood samples from 361 COVID-19 patients in Wuhan, China, and applied it to 106 COVID-19 patients in three Korean medical institutions. Results In the testing data sets, EDRnet provided high sensitivity (100%), specificity (91%), and accuracy (92%). To extend the number of patient data points, we developed a web application (BeatCOVID19) where anyone can access the model to predict mortality and can register his or her own blood laboratory results. Conclusions Our new AI model, EDRnet, accurately predicts the mortality rate for COVID-19. It is publicly available and aims to help health care providers fight COVID-19 and improve patients’ outcomes." @default.
- W3110800647 created "2020-12-21" @default.
- W3110800647 creator A5007506402 @default.
- W3110800647 creator A5007734013 @default.
- W3110800647 creator A5017541279 @default.
- W3110800647 creator A5021585332 @default.
- W3110800647 creator A5022010420 @default.
- W3110800647 creator A5026613707 @default.
- W3110800647 creator A5032054737 @default.
- W3110800647 creator A5042237572 @default.
- W3110800647 creator A5055721024 @default.
- W3110800647 creator A5071806453 @default.
- W3110800647 creator A5072890823 @default.
- W3110800647 creator A5074697684 @default.
- W3110800647 creator A5081624446 @default.
- W3110800647 creator A5082822820 @default.
- W3110800647 date "2020-12-23" @default.
- W3110800647 modified "2023-10-03" @default.
- W3110800647 title "An Artificial Intelligence Model to Predict the Mortality of COVID-19 Patients at Hospital Admission Time Using Routine Blood Samples: Development and Validation of an Ensemble Model" @default.
- W3110800647 cites W3008827533 @default.
- W3110800647 cites W3009314935 @default.
- W3110800647 cites W3009567932 @default.
- W3110800647 cites W3010223921 @default.
- W3110800647 cites W3011527465 @default.
- W3110800647 cites W3014231150 @default.
- W3110800647 cites W3015218828 @default.
- W3110800647 cites W3015544049 @default.
- W3110800647 cites W3016127406 @default.
- W3110800647 cites W3019785070 @default.
- W3110800647 cites W3023452186 @default.
- W3110800647 cites W3023827256 @default.
- W3110800647 cites W3024049432 @default.
- W3110800647 cites W3025394897 @default.
- W3110800647 cites W3026888299 @default.
- W3110800647 cites W3028902173 @default.
- W3110800647 cites W3029692511 @default.
- W3110800647 cites W3031439233 @default.
- W3110800647 cites W3032658634 @default.
- W3110800647 cites W3035467111 @default.
- W3110800647 cites W3036065274 @default.
- W3110800647 cites W3037558495 @default.
- W3110800647 cites W3039206739 @default.
- W3110800647 cites W3041403051 @default.
- W3110800647 cites W3049745022 @default.
- W3110800647 cites W3080104785 @default.
- W3110800647 cites W3080153154 @default.
- W3110800647 cites W3080462102 @default.
- W3110800647 cites W3081208247 @default.
- W3110800647 cites W3102476541 @default.
- W3110800647 cites W3165656738 @default.
- W3110800647 cites W4205231802 @default.
- W3110800647 doi "https://doi.org/10.2196/25442" @default.
- W3110800647 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7759509" @default.
- W3110800647 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33301414" @default.
- W3110800647 hasPublicationYear "2020" @default.
- W3110800647 type Work @default.
- W3110800647 sameAs 3110800647 @default.
- W3110800647 citedByCount "57" @default.
- W3110800647 countsByYear W31108006472020 @default.
- W3110800647 countsByYear W31108006472021 @default.
- W3110800647 countsByYear W31108006472022 @default.
- W3110800647 countsByYear W31108006472023 @default.
- W3110800647 crossrefType "journal-article" @default.
- W3110800647 hasAuthorship W3110800647A5007506402 @default.
- W3110800647 hasAuthorship W3110800647A5007734013 @default.
- W3110800647 hasAuthorship W3110800647A5017541279 @default.
- W3110800647 hasAuthorship W3110800647A5021585332 @default.
- W3110800647 hasAuthorship W3110800647A5022010420 @default.
- W3110800647 hasAuthorship W3110800647A5026613707 @default.
- W3110800647 hasAuthorship W3110800647A5032054737 @default.
- W3110800647 hasAuthorship W3110800647A5042237572 @default.
- W3110800647 hasAuthorship W3110800647A5055721024 @default.
- W3110800647 hasAuthorship W3110800647A5071806453 @default.
- W3110800647 hasAuthorship W3110800647A5072890823 @default.
- W3110800647 hasAuthorship W3110800647A5074697684 @default.
- W3110800647 hasAuthorship W3110800647A5081624446 @default.
- W3110800647 hasAuthorship W3110800647A5082822820 @default.
- W3110800647 hasBestOaLocation W31108006471 @default.
- W3110800647 hasConcept C119857082 @default.
- W3110800647 hasConcept C126322002 @default.
- W3110800647 hasConcept C154945302 @default.
- W3110800647 hasConcept C169258074 @default.
- W3110800647 hasConcept C179755657 @default.
- W3110800647 hasConcept C194828623 @default.
- W3110800647 hasConcept C2779134260 @default.
- W3110800647 hasConcept C3008058167 @default.
- W3110800647 hasConcept C41008148 @default.
- W3110800647 hasConcept C45804977 @default.
- W3110800647 hasConcept C50644808 @default.
- W3110800647 hasConcept C524204448 @default.
- W3110800647 hasConcept C71924100 @default.
- W3110800647 hasConceptScore W3110800647C119857082 @default.
- W3110800647 hasConceptScore W3110800647C126322002 @default.
- W3110800647 hasConceptScore W3110800647C154945302 @default.
- W3110800647 hasConceptScore W3110800647C169258074 @default.
- W3110800647 hasConceptScore W3110800647C179755657 @default.
- W3110800647 hasConceptScore W3110800647C194828623 @default.
- W3110800647 hasConceptScore W3110800647C2779134260 @default.