Matches in SemOpenAlex for { <https://semopenalex.org/work/W3110858178> ?p ?o ?g. }
- W3110858178 abstract "Abstract Modern, high-throughput animal tracking studies collect increasingly large volumes of data at very fine temporal scales. At these scales, location error can exceed the animal’s step size, leading to mis-estimation of key movement metrics such as speed. ‘Cleaning’ the data to reduce location errors prior to analyses is one of the main ways movement ecologists deal with noisy data, and has the advantage of being more scalable to massive datasets than more complex methods. Though data cleaning is widely recommended, and ecologists routinely consider cleaned data to be the ground-truth, inclusive uniform guidance on this crucial step, and on how to organise the cleaning of massive datasets, is still rather scarce. A pipeline for cleaning massive high-throughput datasets must balance ease of use and computationally efficient signal vs. noise screening, in which location errors are rejected without discarding valid animal movements. Another useful feature of a pre-processing pipeline is efficiently segmenting and clustering location data for statistical methods, while also being scalable to large datasets and robust to imperfect sampling. Manual methods being prohibitively time consuming, and to boost reproducibility, a robust pre-processing pipeline must be automated. In this article we provide guidance on building pipelines for pre-processing high-throughput animal tracking data in order to prepare it for subsequent analysis. Our recommended pipeline, consisting of removing outliers, smoothing the filtered result, and thinning it to a uniform sampling interval, is applicable to many massive tracking datasets. We apply this pipeline to simulated movement data with location errors, and also show a case study of how large volumes of cleaned data can be transformed into biologically meaningful ‘residence patches’, for quick biological inference on animal space use. We use calibration data to illustrate how pre-processing improves its quality, and to verify that the residence patch synthesis accurately captures animal space use. Finally, turning to tracking data from Egyptian fruit bats ( Rousettus aegyptiacus ), we demonstrate the pre-processing pipeline and residence patch method in a fully worked out example. To help with fast implementation of standardised methods, we developed the R package atlastools , which we also introduce here. Our pre-processing pipeline and atlastools can be used with any high-throughput animal movement data in which the high data-volume combined with knowledge of the tracked individuals’ movement capacity can be used to reduce location errors. The atlastools function is easy to use for beginners, while providing a template for further development. The use of common pre-processing steps that are simple yet robust promotes standardised methods in the field of movement ecology and leads to better inferences from data." @default.
- W3110858178 created "2020-12-21" @default.
- W3110858178 creator A5036347191 @default.
- W3110858178 creator A5038211867 @default.
- W3110858178 creator A5056808449 @default.
- W3110858178 creator A5060236396 @default.
- W3110858178 creator A5069626509 @default.
- W3110858178 creator A5073166556 @default.
- W3110858178 creator A5078034455 @default.
- W3110858178 date "2020-12-16" @default.
- W3110858178 modified "2023-10-17" @default.
- W3110858178 title "A Guide to Pre-Processing High-Throughput Animal Tracking Data" @default.
- W3110858178 cites W1491420403 @default.
- W3110858178 cites W1555783527 @default.
- W3110858178 cites W1917545934 @default.
- W3110858178 cites W1944732173 @default.
- W3110858178 cites W1969433916 @default.
- W3110858178 cites W1978939541 @default.
- W3110858178 cites W1993644786 @default.
- W3110858178 cites W1995261989 @default.
- W3110858178 cites W2001457444 @default.
- W3110858178 cites W2006874756 @default.
- W3110858178 cites W2008985174 @default.
- W3110858178 cites W2011679461 @default.
- W3110858178 cites W2018791357 @default.
- W3110858178 cites W2023116290 @default.
- W3110858178 cites W2028921316 @default.
- W3110858178 cites W2033371003 @default.
- W3110858178 cites W2057314736 @default.
- W3110858178 cites W2080842868 @default.
- W3110858178 cites W2085261163 @default.
- W3110858178 cites W2089591989 @default.
- W3110858178 cites W2094353923 @default.
- W3110858178 cites W2103346548 @default.
- W3110858178 cites W2104870598 @default.
- W3110858178 cites W2113380282 @default.
- W3110858178 cites W2114077318 @default.
- W3110858178 cites W2127821253 @default.
- W3110858178 cites W2135904402 @default.
- W3110858178 cites W2140452356 @default.
- W3110858178 cites W2142291556 @default.
- W3110858178 cites W2152507005 @default.
- W3110858178 cites W2155372815 @default.
- W3110858178 cites W2157146852 @default.
- W3110858178 cites W2171668578 @default.
- W3110858178 cites W2171848690 @default.
- W3110858178 cites W2185907055 @default.
- W3110858178 cites W2281654679 @default.
- W3110858178 cites W2307442473 @default.
- W3110858178 cites W2322700932 @default.
- W3110858178 cites W2341959691 @default.
- W3110858178 cites W2398597748 @default.
- W3110858178 cites W2434939726 @default.
- W3110858178 cites W2482124640 @default.
- W3110858178 cites W2507972440 @default.
- W3110858178 cites W2605631111 @default.
- W3110858178 cites W2612822479 @default.
- W3110858178 cites W2748156161 @default.
- W3110858178 cites W2766660926 @default.
- W3110858178 cites W2783877980 @default.
- W3110858178 cites W2789353685 @default.
- W3110858178 cites W2804233742 @default.
- W3110858178 cites W2804375816 @default.
- W3110858178 cites W2883219412 @default.
- W3110858178 cites W2898601766 @default.
- W3110858178 cites W2904158680 @default.
- W3110858178 cites W2949379258 @default.
- W3110858178 cites W2973484503 @default.
- W3110858178 cites W2981818786 @default.
- W3110858178 cites W2988895592 @default.
- W3110858178 cites W3009252081 @default.
- W3110858178 cites W3012336773 @default.
- W3110858178 cites W3034519133 @default.
- W3110858178 cites W3040812245 @default.
- W3110858178 cites W3098510716 @default.
- W3110858178 cites W3101500223 @default.
- W3110858178 cites W3101866706 @default.
- W3110858178 cites W3127616778 @default.
- W3110858178 cites W3131751894 @default.
- W3110858178 cites W3135121888 @default.
- W3110858178 cites W3162212943 @default.
- W3110858178 cites W3164888729 @default.
- W3110858178 cites W3174080914 @default.
- W3110858178 cites W4245161709 @default.
- W3110858178 cites W585085135 @default.
- W3110858178 doi "https://doi.org/10.1101/2020.12.15.422876" @default.
- W3110858178 hasPublicationYear "2020" @default.
- W3110858178 type Work @default.
- W3110858178 sameAs 3110858178 @default.
- W3110858178 citedByCount "5" @default.
- W3110858178 countsByYear W31108581782021 @default.
- W3110858178 countsByYear W31108581782022 @default.
- W3110858178 crossrefType "posted-content" @default.
- W3110858178 hasAuthorship W3110858178A5036347191 @default.
- W3110858178 hasAuthorship W3110858178A5038211867 @default.
- W3110858178 hasAuthorship W3110858178A5056808449 @default.
- W3110858178 hasAuthorship W3110858178A5060236396 @default.
- W3110858178 hasAuthorship W3110858178A5069626509 @default.
- W3110858178 hasAuthorship W3110858178A5073166556 @default.
- W3110858178 hasAuthorship W3110858178A5078034455 @default.