Matches in SemOpenAlex for { <https://semopenalex.org/work/W3110873114> ?p ?o ?g. }
- W3110873114 endingPage "110423" @default.
- W3110873114 startingPage "110423" @default.
- W3110873114 abstract "A novel hybrid learning process based on the decompose-ensemble principle is proposed in this paper, integrating the NSRX learning structure with extreme learning machine (ELM) as an efficient predictor. While training the proposed model, the self-adaptive decomposition method of empirical mode decomposition (EMD) is first used to divide a training set of tourist arrival series into several relatively regular sub-series. Then, these decomposed sub-series are reconstructed into three components of high, moderate, and low frequency based on the balance of reconstructed components’ relative stationarity and the fluctuation patterns between components and the original data series. Next, extracted features and forecasting results for the three components, obtained via ELM, are combined with d-lags historical data from the undecomposed training set; this set serves as the training sample input to train the hybrid model for enhanced tourist arrival prediction. For illustration and verification purposes, the proposed learning paradigm is applied to predict Hong Kong's monthly inbound tourist arrivals from 14 source markets from January 2007 to December 2018. Empirical results demonstrate that the proposed novel ensemble-learning paradigm outperforms all benchmark models, including five popular single models and five ensemble models, in terms of prediction accuracy. These findings suggest that the proposed model shows promise in forecasting complicated time series demonstrating high volatility and irregularity." @default.
- W3110873114 created "2020-12-21" @default.
- W3110873114 creator A5014796204 @default.
- W3110873114 creator A5050204205 @default.
- W3110873114 creator A5063104936 @default.
- W3110873114 date "2021-02-01" @default.
- W3110873114 modified "2023-09-23" @default.
- W3110873114 title "Mode decomposition method integrating mode reconstruction, feature extraction, and ELM for tourist arrival forecasting" @default.
- W3110873114 cites W1970436524 @default.
- W3110873114 cites W1970978817 @default.
- W3110873114 cites W1972725533 @default.
- W3110873114 cites W1973048907 @default.
- W3110873114 cites W1975783225 @default.
- W3110873114 cites W1980713635 @default.
- W3110873114 cites W1983147111 @default.
- W3110873114 cites W1995420366 @default.
- W3110873114 cites W1998748838 @default.
- W3110873114 cites W2001196400 @default.
- W3110873114 cites W2005382206 @default.
- W3110873114 cites W2006746888 @default.
- W3110873114 cites W2009465763 @default.
- W3110873114 cites W2011630059 @default.
- W3110873114 cites W2014683958 @default.
- W3110873114 cites W2025391890 @default.
- W3110873114 cites W2028702910 @default.
- W3110873114 cites W2030339726 @default.
- W3110873114 cites W2030991939 @default.
- W3110873114 cites W2031377725 @default.
- W3110873114 cites W2034201819 @default.
- W3110873114 cites W2045581228 @default.
- W3110873114 cites W2048267917 @default.
- W3110873114 cites W2067284569 @default.
- W3110873114 cites W2089268064 @default.
- W3110873114 cites W2098290512 @default.
- W3110873114 cites W2101674911 @default.
- W3110873114 cites W2104242071 @default.
- W3110873114 cites W2111072639 @default.
- W3110873114 cites W2118900829 @default.
- W3110873114 cites W2121971770 @default.
- W3110873114 cites W2128130077 @default.
- W3110873114 cites W2195569869 @default.
- W3110873114 cites W2400522988 @default.
- W3110873114 cites W2483628712 @default.
- W3110873114 cites W2491978341 @default.
- W3110873114 cites W2564352171 @default.
- W3110873114 cites W2693527420 @default.
- W3110873114 cites W2751185093 @default.
- W3110873114 cites W2766986120 @default.
- W3110873114 cites W2794095758 @default.
- W3110873114 cites W2794287081 @default.
- W3110873114 cites W2814653346 @default.
- W3110873114 cites W2897751982 @default.
- W3110873114 cites W2902021342 @default.
- W3110873114 cites W2923452236 @default.
- W3110873114 cites W2939094371 @default.
- W3110873114 cites W2939264787 @default.
- W3110873114 cites W2941649556 @default.
- W3110873114 cites W2941861054 @default.
- W3110873114 cites W2969005134 @default.
- W3110873114 cites W388323479 @default.
- W3110873114 doi "https://doi.org/10.1016/j.chaos.2020.110423" @default.
- W3110873114 hasPublicationYear "2021" @default.
- W3110873114 type Work @default.
- W3110873114 sameAs 3110873114 @default.
- W3110873114 citedByCount "6" @default.
- W3110873114 countsByYear W31108731142021 @default.
- W3110873114 countsByYear W31108731142022 @default.
- W3110873114 countsByYear W31108731142023 @default.
- W3110873114 crossrefType "journal-article" @default.
- W3110873114 hasAuthorship W3110873114A5014796204 @default.
- W3110873114 hasAuthorship W3110873114A5050204205 @default.
- W3110873114 hasAuthorship W3110873114A5063104936 @default.
- W3110873114 hasConcept C106131492 @default.
- W3110873114 hasConcept C111919701 @default.
- W3110873114 hasConcept C119857082 @default.
- W3110873114 hasConcept C119898033 @default.
- W3110873114 hasConcept C124101348 @default.
- W3110873114 hasConcept C13280743 @default.
- W3110873114 hasConcept C143724316 @default.
- W3110873114 hasConcept C151406439 @default.
- W3110873114 hasConcept C151730666 @default.
- W3110873114 hasConcept C153180895 @default.
- W3110873114 hasConcept C154945302 @default.
- W3110873114 hasConcept C185798385 @default.
- W3110873114 hasConcept C205649164 @default.
- W3110873114 hasConcept C25570617 @default.
- W3110873114 hasConcept C2780150128 @default.
- W3110873114 hasConcept C31972630 @default.
- W3110873114 hasConcept C41008148 @default.
- W3110873114 hasConcept C45942800 @default.
- W3110873114 hasConcept C48677424 @default.
- W3110873114 hasConcept C50644808 @default.
- W3110873114 hasConcept C86803240 @default.
- W3110873114 hasConceptScore W3110873114C106131492 @default.
- W3110873114 hasConceptScore W3110873114C111919701 @default.
- W3110873114 hasConceptScore W3110873114C119857082 @default.
- W3110873114 hasConceptScore W3110873114C119898033 @default.
- W3110873114 hasConceptScore W3110873114C124101348 @default.