Matches in SemOpenAlex for { <https://semopenalex.org/work/W3110901394> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3110901394 endingPage "31" @default.
- W3110901394 startingPage "22" @default.
- W3110901394 abstract "The estimation of construction and demolition waste is a difficult task, because it depends on technical, cultural and geometric variables of the buildings. Machine learning has been increasingly used in the construction industry, because it combines the calculation of large amounts of data with the difficulty of describing or understanding construction techniques related to human behaviour. This study evaluated the performance of artificial neural networks on predicting the amount of waste generated in construction works. Through an exploratory research and analysis of 330 works, the performance of neural networks with two, five or ten neurons in the hidden layer, using gross floor area and working duration as input data has been studied. Three training algorithms were tested. Up to five training cycles were simulated. The results showed that the most appropriate training algorithm for the case is Bayesian regularisation and, using two neurons in the hidden layer and two training cycles, excellent prediction results can be achieved, with R 2 of 0.96. The best configuration proposed for the neural network was able to accurately predict 43% of cases. The study showed that results obtained from machine learning worked better than those obtained from linear multiple regression models, usual in the literature." @default.
- W3110901394 created "2020-12-21" @default.
- W3110901394 creator A5079367091 @default.
- W3110901394 date "2021-02-01" @default.
- W3110901394 modified "2023-09-23" @default.
- W3110901394 title "Estimation of construction waste generation using machine learning" @default.
- W3110901394 cites W1982969742 @default.
- W3110901394 cites W1992709014 @default.
- W3110901394 cites W1996341035 @default.
- W3110901394 cites W2010773153 @default.
- W3110901394 cites W2051812123 @default.
- W3110901394 cites W2058334089 @default.
- W3110901394 cites W2069241906 @default.
- W3110901394 cites W2073524950 @default.
- W3110901394 cites W2087070363 @default.
- W3110901394 cites W2110983336 @default.
- W3110901394 cites W2256578114 @default.
- W3110901394 cites W2412393926 @default.
- W3110901394 cites W2489678722 @default.
- W3110901394 cites W2504605414 @default.
- W3110901394 cites W2515360521 @default.
- W3110901394 cites W261497591 @default.
- W3110901394 cites W2765870408 @default.
- W3110901394 cites W2789055628 @default.
- W3110901394 cites W2790947208 @default.
- W3110901394 cites W2804203252 @default.
- W3110901394 cites W2885232630 @default.
- W3110901394 cites W2892906201 @default.
- W3110901394 cites W2900991105 @default.
- W3110901394 cites W2911546748 @default.
- W3110901394 cites W2925049777 @default.
- W3110901394 cites W2937524686 @default.
- W3110901394 cites W2943295871 @default.
- W3110901394 cites W2953835893 @default.
- W3110901394 cites W3015397302 @default.
- W3110901394 cites W3019559860 @default.
- W3110901394 cites W3022124891 @default.
- W3110901394 cites W3043058814 @default.
- W3110901394 doi "https://doi.org/10.1680/jwarm.20.00019" @default.
- W3110901394 hasPublicationYear "2021" @default.
- W3110901394 type Work @default.
- W3110901394 sameAs 3110901394 @default.
- W3110901394 citedByCount "4" @default.
- W3110901394 countsByYear W31109013942021 @default.
- W3110901394 countsByYear W31109013942022 @default.
- W3110901394 countsByYear W31109013942023 @default.
- W3110901394 crossrefType "journal-article" @default.
- W3110901394 hasAuthorship W3110901394A5079367091 @default.
- W3110901394 hasConcept C107673813 @default.
- W3110901394 hasConcept C119857082 @default.
- W3110901394 hasConcept C127413603 @default.
- W3110901394 hasConcept C147176958 @default.
- W3110901394 hasConcept C154945302 @default.
- W3110901394 hasConcept C201995342 @default.
- W3110901394 hasConcept C2778076428 @default.
- W3110901394 hasConcept C2780451532 @default.
- W3110901394 hasConcept C2781469121 @default.
- W3110901394 hasConcept C41008148 @default.
- W3110901394 hasConcept C50644808 @default.
- W3110901394 hasConceptScore W3110901394C107673813 @default.
- W3110901394 hasConceptScore W3110901394C119857082 @default.
- W3110901394 hasConceptScore W3110901394C127413603 @default.
- W3110901394 hasConceptScore W3110901394C147176958 @default.
- W3110901394 hasConceptScore W3110901394C154945302 @default.
- W3110901394 hasConceptScore W3110901394C201995342 @default.
- W3110901394 hasConceptScore W3110901394C2778076428 @default.
- W3110901394 hasConceptScore W3110901394C2780451532 @default.
- W3110901394 hasConceptScore W3110901394C2781469121 @default.
- W3110901394 hasConceptScore W3110901394C41008148 @default.
- W3110901394 hasConceptScore W3110901394C50644808 @default.
- W3110901394 hasIssue "1" @default.
- W3110901394 hasLocation W31109013941 @default.
- W3110901394 hasOpenAccess W3110901394 @default.
- W3110901394 hasPrimaryLocation W31109013941 @default.
- W3110901394 hasRelatedWork W2035493661 @default.
- W3110901394 hasRelatedWork W2047822641 @default.
- W3110901394 hasRelatedWork W2108371318 @default.
- W3110901394 hasRelatedWork W2167729230 @default.
- W3110901394 hasRelatedWork W2492166670 @default.
- W3110901394 hasRelatedWork W2897753458 @default.
- W3110901394 hasRelatedWork W2946855854 @default.
- W3110901394 hasRelatedWork W2965720577 @default.
- W3110901394 hasRelatedWork W3049476496 @default.
- W3110901394 hasRelatedWork W46604922 @default.
- W3110901394 hasVolume "174" @default.
- W3110901394 isParatext "false" @default.
- W3110901394 isRetracted "false" @default.
- W3110901394 magId "3110901394" @default.
- W3110901394 workType "article" @default.