Matches in SemOpenAlex for { <https://semopenalex.org/work/W3110929880> ?p ?o ?g. }
- W3110929880 endingPage "107371" @default.
- W3110929880 startingPage "107371" @default.
- W3110929880 abstract "Safety assurance is of paramount importance in the air transportation system. In this paper, we analyze the historical passenger airline accidents that happened from 1982 to 2006 as reported in the National Transportation Safety Board (NTSB) aviation accident database. A four-step procedure is formulated to construct a Bayesian network to capture the causal relationships embedded in the sequences of these accidents. First of all, with respect to each accident, a graphical representation is developed to facilitate the visualization of the escalation of initiating events into aviation accidents in the system. Next, we develop a Bayesian network representation of all the accidents by aggregating the accident-wise graphical representations together, where the causal and dependent relationships among a wide variety of contributory factors and outcomes in terms of aircraft damage and personnel injury are captured. In the Bayesian network, the prior probabilities are estimated based on the accident occurrence times and the aircraft departure data from the Bureau of Transportation Statistics (BTS). To estimate the conditional probabilities in the Bayesian network, we develop a monotonically increasing function, whose parameters are calibrated using the probability information on single events in the available data. Finally, we develop a computer program to automate the generation of the Bayesian network in compliance with the XML format used in the commercial GeNIe modeler. The constructed Bayesian network is then fed into GeNIe modeler for accident analysis. The mapping of the NTSB data to a Bayesian network facilitates both forward propagation and backward inference in probabilistic analysis, thereby supporting accident investigations and risk analysis. Several accident cases are used to demonstrate the developed approach." @default.
- W3110929880 created "2020-12-21" @default.
- W3110929880 creator A5080316854 @default.
- W3110929880 creator A5089894989 @default.
- W3110929880 date "2021-05-01" @default.
- W3110929880 modified "2023-10-18" @default.
- W3110929880 title "Bayesian network modeling of accident investigation reports for aviation safety assessment" @default.
- W3110929880 cites W1940286691 @default.
- W3110929880 cites W1998643818 @default.
- W3110929880 cites W2003109266 @default.
- W3110929880 cites W2014373625 @default.
- W3110929880 cites W2015127657 @default.
- W3110929880 cites W2016364598 @default.
- W3110929880 cites W2018316429 @default.
- W3110929880 cites W2018571157 @default.
- W3110929880 cites W2027094743 @default.
- W3110929880 cites W2028442250 @default.
- W3110929880 cites W2038165774 @default.
- W3110929880 cites W2043089065 @default.
- W3110929880 cites W2045759663 @default.
- W3110929880 cites W2066074450 @default.
- W3110929880 cites W2067627945 @default.
- W3110929880 cites W2081025867 @default.
- W3110929880 cites W2086668606 @default.
- W3110929880 cites W2114079560 @default.
- W3110929880 cites W2119833845 @default.
- W3110929880 cites W2127625042 @default.
- W3110929880 cites W2136095267 @default.
- W3110929880 cites W2145039203 @default.
- W3110929880 cites W2344360129 @default.
- W3110929880 cites W2523525984 @default.
- W3110929880 cites W2567479598 @default.
- W3110929880 cites W2574897549 @default.
- W3110929880 cites W269055112 @default.
- W3110929880 cites W2804659757 @default.
- W3110929880 cites W2884323833 @default.
- W3110929880 cites W2896288349 @default.
- W3110929880 cites W2898176471 @default.
- W3110929880 cites W2899778597 @default.
- W3110929880 cites W2950093580 @default.
- W3110929880 cites W2999374782 @default.
- W3110929880 cites W3000241400 @default.
- W3110929880 doi "https://doi.org/10.1016/j.ress.2020.107371" @default.
- W3110929880 hasPublicationYear "2021" @default.
- W3110929880 type Work @default.
- W3110929880 sameAs 3110929880 @default.
- W3110929880 citedByCount "67" @default.
- W3110929880 countsByYear W31109298802021 @default.
- W3110929880 countsByYear W31109298802022 @default.
- W3110929880 countsByYear W31109298802023 @default.
- W3110929880 crossrefType "journal-article" @default.
- W3110929880 hasAuthorship W3110929880A5080316854 @default.
- W3110929880 hasAuthorship W3110929880A5089894989 @default.
- W3110929880 hasBestOaLocation W31109298801 @default.
- W3110929880 hasConcept C105795698 @default.
- W3110929880 hasConcept C107673813 @default.
- W3110929880 hasConcept C111472728 @default.
- W3110929880 hasConcept C119857082 @default.
- W3110929880 hasConcept C124101348 @default.
- W3110929880 hasConcept C127413603 @default.
- W3110929880 hasConcept C138885662 @default.
- W3110929880 hasConcept C146978453 @default.
- W3110929880 hasConcept C154945302 @default.
- W3110929880 hasConcept C17744445 @default.
- W3110929880 hasConcept C199539241 @default.
- W3110929880 hasConcept C2776214188 @default.
- W3110929880 hasConcept C2776359362 @default.
- W3110929880 hasConcept C2780289543 @default.
- W3110929880 hasConcept C33724603 @default.
- W3110929880 hasConcept C33923547 @default.
- W3110929880 hasConcept C41008148 @default.
- W3110929880 hasConcept C44492722 @default.
- W3110929880 hasConcept C74448152 @default.
- W3110929880 hasConcept C94625758 @default.
- W3110929880 hasConceptScore W3110929880C105795698 @default.
- W3110929880 hasConceptScore W3110929880C107673813 @default.
- W3110929880 hasConceptScore W3110929880C111472728 @default.
- W3110929880 hasConceptScore W3110929880C119857082 @default.
- W3110929880 hasConceptScore W3110929880C124101348 @default.
- W3110929880 hasConceptScore W3110929880C127413603 @default.
- W3110929880 hasConceptScore W3110929880C138885662 @default.
- W3110929880 hasConceptScore W3110929880C146978453 @default.
- W3110929880 hasConceptScore W3110929880C154945302 @default.
- W3110929880 hasConceptScore W3110929880C17744445 @default.
- W3110929880 hasConceptScore W3110929880C199539241 @default.
- W3110929880 hasConceptScore W3110929880C2776214188 @default.
- W3110929880 hasConceptScore W3110929880C2776359362 @default.
- W3110929880 hasConceptScore W3110929880C2780289543 @default.
- W3110929880 hasConceptScore W3110929880C33724603 @default.
- W3110929880 hasConceptScore W3110929880C33923547 @default.
- W3110929880 hasConceptScore W3110929880C41008148 @default.
- W3110929880 hasConceptScore W3110929880C44492722 @default.
- W3110929880 hasConceptScore W3110929880C74448152 @default.
- W3110929880 hasConceptScore W3110929880C94625758 @default.
- W3110929880 hasFunder F4320306101 @default.
- W3110929880 hasLocation W31109298801 @default.
- W3110929880 hasOpenAccess W3110929880 @default.
- W3110929880 hasPrimaryLocation W31109298801 @default.