Matches in SemOpenAlex for { <https://semopenalex.org/work/W3110978304> ?p ?o ?g. }
- W3110978304 endingPage "569" @default.
- W3110978304 startingPage "549" @default.
- W3110978304 abstract "Abstract The potential for polarimetric Doppler radar measurements to improve predictions of ice microphysical processes within an idealized model–observational framework is examined. In an effort to more rigorously constrain ice growth processes (e.g., vapor deposition) with observations of natural clouds, a novel framework is developed to compare simulated and observed radar measurements, coupling a bulk adaptive-habit model of vapor growth to a polarimetric radar forward model. Bayesian inference on key microphysical model parameters is then used, via a Markov chain Monte Carlo sampler, to estimate the probability distribution of the model parameters. The statistical formalism of this method allows for robust estimates of the optimal parameter values, along with (non-Gaussian) estimates of their uncertainty. To demonstrate this framework, observations from Department of Energy radars in the Arctic during a case of pristine ice precipitation are used to constrain vapor deposition parameters in the adaptive habit model. The resulting parameter probability distributions provide physically plausible changes in ice particle density and aspect ratio during growth. A lack of direct constraint on the number concentration produces a range of possible mean particle sizes, with the mean size inversely correlated to number concentration. Consistency is found between the estimated inherent growth ratio and independent laboratory measurements, increasing confidence in the parameter PDFs and demonstrating the effectiveness of the radar measurements in constraining the parameters. The combined Doppler and polarimetric observations produce the highest-confidence estimates of the parameter PDFs, with the Doppler measurements providing a stronger constraint for this case." @default.
- W3110978304 created "2020-12-21" @default.
- W3110978304 creator A5013327054 @default.
- W3110978304 creator A5030676860 @default.
- W3110978304 creator A5035679445 @default.
- W3110978304 creator A5039590638 @default.
- W3110978304 creator A5043685312 @default.
- W3110978304 creator A5083288725 @default.
- W3110978304 date "2021-02-01" @default.
- W3110978304 modified "2023-09-25" @default.
- W3110978304 title "Radar-Based Bayesian Estimation of Ice Crystal Growth Parameters within a Microphysical Model" @default.
- W3110978304 cites W1522112144 @default.
- W3110978304 cites W1559090159 @default.
- W3110978304 cites W1967223524 @default.
- W3110978304 cites W1971901404 @default.
- W3110978304 cites W1976391619 @default.
- W3110978304 cites W1984884576 @default.
- W3110978304 cites W1989127088 @default.
- W3110978304 cites W1995780830 @default.
- W3110978304 cites W1999072122 @default.
- W3110978304 cites W1999146269 @default.
- W3110978304 cites W1999440036 @default.
- W3110978304 cites W1999903045 @default.
- W3110978304 cites W2004743298 @default.
- W3110978304 cites W2011234168 @default.
- W3110978304 cites W2021575707 @default.
- W3110978304 cites W2022158302 @default.
- W3110978304 cites W2022315142 @default.
- W3110978304 cites W2022839575 @default.
- W3110978304 cites W2023379532 @default.
- W3110978304 cites W2024461893 @default.
- W3110978304 cites W2034134698 @default.
- W3110978304 cites W2036095727 @default.
- W3110978304 cites W2037408461 @default.
- W3110978304 cites W2040017785 @default.
- W3110978304 cites W2040801070 @default.
- W3110978304 cites W2041686581 @default.
- W3110978304 cites W2043126590 @default.
- W3110978304 cites W2043458064 @default.
- W3110978304 cites W2045604022 @default.
- W3110978304 cites W2051722342 @default.
- W3110978304 cites W2052645054 @default.
- W3110978304 cites W2059126724 @default.
- W3110978304 cites W2062750375 @default.
- W3110978304 cites W2079622917 @default.
- W3110978304 cites W2080165048 @default.
- W3110978304 cites W2081199615 @default.
- W3110978304 cites W2086262081 @default.
- W3110978304 cites W2094661995 @default.
- W3110978304 cites W2108072246 @default.
- W3110978304 cites W2108284535 @default.
- W3110978304 cites W2109892413 @default.
- W3110978304 cites W2111502503 @default.
- W3110978304 cites W2119610585 @default.
- W3110978304 cites W2123939692 @default.
- W3110978304 cites W2125542949 @default.
- W3110978304 cites W2129095956 @default.
- W3110978304 cites W2133092748 @default.
- W3110978304 cites W2137255030 @default.
- W3110978304 cites W2138524959 @default.
- W3110978304 cites W2145816374 @default.
- W3110978304 cites W2152916584 @default.
- W3110978304 cites W2152924556 @default.
- W3110978304 cites W2159123243 @default.
- W3110978304 cites W2168594626 @default.
- W3110978304 cites W2174364137 @default.
- W3110978304 cites W2174778049 @default.
- W3110978304 cites W2176088789 @default.
- W3110978304 cites W2179848989 @default.
- W3110978304 cites W2293682603 @default.
- W3110978304 cites W2300479417 @default.
- W3110978304 cites W2327362489 @default.
- W3110978304 cites W2329235221 @default.
- W3110978304 cites W2334150767 @default.
- W3110978304 cites W2357670123 @default.
- W3110978304 cites W2399336920 @default.
- W3110978304 cites W2472321122 @default.
- W3110978304 cites W2525974560 @default.
- W3110978304 cites W2563243459 @default.
- W3110978304 cites W2604144091 @default.
- W3110978304 cites W2605998018 @default.
- W3110978304 cites W2607178666 @default.
- W3110978304 cites W2765701586 @default.
- W3110978304 cites W2772506664 @default.
- W3110978304 cites W2787396613 @default.
- W3110978304 cites W2801134574 @default.
- W3110978304 cites W2903423990 @default.
- W3110978304 cites W2905606168 @default.
- W3110978304 cites W2936409253 @default.
- W3110978304 cites W2940720065 @default.
- W3110978304 cites W2962356128 @default.
- W3110978304 cites W2995131028 @default.
- W3110978304 cites W2995375018 @default.
- W3110978304 cites W4233198876 @default.
- W3110978304 cites W4239050986 @default.
- W3110978304 doi "https://doi.org/10.1175/jas-d-20-0134.1" @default.
- W3110978304 hasPublicationYear "2021" @default.
- W3110978304 type Work @default.