Matches in SemOpenAlex for { <https://semopenalex.org/work/W3111112601> ?p ?o ?g. }
- W3111112601 endingPage "7126" @default.
- W3111112601 startingPage "7107" @default.
- W3111112601 abstract "The past decade has seen an explosion of the amount of digital information generated within the healthcare domain. Digital data exist in the form of images, video, speech, transcripts, electronic health records, clinical records, and free-text. Analysis and interpretation of healthcare data is a daunting task, and it demands a great deal of time, resources, and human effort. In this paper, we focus on the problem of co-morbidity recognition from patient's clinical records. To this aim, we employ both classical machine learning and deep learning approaches. We use word embeddings and bag-of-words representations, coupled with feature selection techniques. The goal of our work is to develop a classification system to identify whether a certain health condition occurs for a patient by studying his/her past clinical records. In more detail, we have used pre-trained word2vec, domain-trained, GloVe, fastText, and universal sentence encoder embeddings to tackle the classification of sixteen morbidity conditions within clinical records. We have compared the outcomes of classical machine learning and deep learning approaches with the employed feature representation methods and feature selection methods. We present a comprehensive discussion of the performances and behaviour of the employed classical machine learning and deep learning approaches. Finally, we have also used ensemble learning techniques over a large number of combinations of classifiers to improve the single model performance. For our experiments, we used the n2c2 natural language processing research dataset, released by Harvard Medical School. The dataset is in the form of clinical notes that contain patient discharge summaries. Given the unbalancedness of the data and their small size, the experimental results indicate the advantage of the ensemble learning technique with respect to single classifier models. In particular, the ensemble learning technique has slightly improved the performances of single classification models but has greatly reduced the variance of predictions stabilizing the accuracies (i.e., the lower standard deviation in comparison with single classifiers). In real-life scenarios, our work can be employed to identify with high accuracy morbidity conditions of patients by feeding our tool with their current clinical notes. Moreover, other domains where classification is a common problem might benefit from our approach as well." @default.
- W3111112601 created "2020-12-21" @default.
- W3111112601 creator A5014673075 @default.
- W3111112601 creator A5033386919 @default.
- W3111112601 creator A5060822647 @default.
- W3111112601 creator A5074097123 @default.
- W3111112601 date "2021-01-01" @default.
- W3111112601 modified "2023-10-03" @default.
- W3111112601 title "Ensembling Classical Machine Learning and Deep Learning Approaches for Morbidity Identification From Clinical Notes" @default.
- W3111112601 cites W1670263352 @default.
- W3111112601 cites W1983082593 @default.
- W3111112601 cites W1999954155 @default.
- W3111112601 cites W2025103722 @default.
- W3111112601 cites W2071943685 @default.
- W3111112601 cites W2096061227 @default.
- W3111112601 cites W2098966372 @default.
- W3111112601 cites W2100220027 @default.
- W3111112601 cites W2124335086 @default.
- W3111112601 cites W2126563678 @default.
- W3111112601 cites W2127960841 @default.
- W3111112601 cites W2152197249 @default.
- W3111112601 cites W2156235098 @default.
- W3111112601 cites W2169722090 @default.
- W3111112601 cites W2250539671 @default.
- W3111112601 cites W2267186426 @default.
- W3111112601 cites W2358897293 @default.
- W3111112601 cites W2493916176 @default.
- W3111112601 cites W2554382158 @default.
- W3111112601 cites W2569168369 @default.
- W3111112601 cites W2729101176 @default.
- W3111112601 cites W2751418808 @default.
- W3111112601 cites W2754876402 @default.
- W3111112601 cites W2755582817 @default.
- W3111112601 cites W2795475639 @default.
- W3111112601 cites W2810349319 @default.
- W3111112601 cites W2889329323 @default.
- W3111112601 cites W2889506968 @default.
- W3111112601 cites W2891177506 @default.
- W3111112601 cites W2897620540 @default.
- W3111112601 cites W2902516827 @default.
- W3111112601 cites W2911964244 @default.
- W3111112601 cites W2913176145 @default.
- W3111112601 cites W2963918774 @default.
- W3111112601 cites W2972984751 @default.
- W3111112601 cites W2977486615 @default.
- W3111112601 cites W2979353030 @default.
- W3111112601 cites W2988766153 @default.
- W3111112601 cites W3007350806 @default.
- W3111112601 cites W3011812967 @default.
- W3111112601 cites W3021743785 @default.
- W3111112601 cites W3027616301 @default.
- W3111112601 cites W4231288952 @default.
- W3111112601 cites W4239510810 @default.
- W3111112601 cites W4244238212 @default.
- W3111112601 doi "https://doi.org/10.1109/access.2020.3043221" @default.
- W3111112601 hasPublicationYear "2021" @default.
- W3111112601 type Work @default.
- W3111112601 sameAs 3111112601 @default.
- W3111112601 citedByCount "51" @default.
- W3111112601 countsByYear W31111126012021 @default.
- W3111112601 countsByYear W31111126012022 @default.
- W3111112601 countsByYear W31111126012023 @default.
- W3111112601 crossrefType "journal-article" @default.
- W3111112601 hasAuthorship W3111112601A5014673075 @default.
- W3111112601 hasAuthorship W3111112601A5033386919 @default.
- W3111112601 hasAuthorship W3111112601A5060822647 @default.
- W3111112601 hasAuthorship W3111112601A5074097123 @default.
- W3111112601 hasBestOaLocation W31111126011 @default.
- W3111112601 hasConcept C108583219 @default.
- W3111112601 hasConcept C116834253 @default.
- W3111112601 hasConcept C119857082 @default.
- W3111112601 hasConcept C134306372 @default.
- W3111112601 hasConcept C138885662 @default.
- W3111112601 hasConcept C148483581 @default.
- W3111112601 hasConcept C154945302 @default.
- W3111112601 hasConcept C162324750 @default.
- W3111112601 hasConcept C187736073 @default.
- W3111112601 hasConcept C204321447 @default.
- W3111112601 hasConcept C2776401178 @default.
- W3111112601 hasConcept C2776461190 @default.
- W3111112601 hasConcept C2777530160 @default.
- W3111112601 hasConcept C2778827112 @default.
- W3111112601 hasConcept C2780451532 @default.
- W3111112601 hasConcept C28006648 @default.
- W3111112601 hasConcept C33923547 @default.
- W3111112601 hasConcept C36503486 @default.
- W3111112601 hasConcept C41008148 @default.
- W3111112601 hasConcept C41608201 @default.
- W3111112601 hasConcept C41895202 @default.
- W3111112601 hasConcept C59404180 @default.
- W3111112601 hasConcept C59822182 @default.
- W3111112601 hasConcept C86803240 @default.
- W3111112601 hasConceptScore W3111112601C108583219 @default.
- W3111112601 hasConceptScore W3111112601C116834253 @default.
- W3111112601 hasConceptScore W3111112601C119857082 @default.
- W3111112601 hasConceptScore W3111112601C134306372 @default.
- W3111112601 hasConceptScore W3111112601C138885662 @default.
- W3111112601 hasConceptScore W3111112601C148483581 @default.