Matches in SemOpenAlex for { <https://semopenalex.org/work/W3111181422> ?p ?o ?g. }
- W3111181422 endingPage "6530" @default.
- W3111181422 startingPage "6518" @default.
- W3111181422 abstract "As an effective method for clustering applications, the clustering ensemble algorithm integrates different clustering solutions into a final one, thus improving the clustering efficiency. The key to designing the clustering ensemble algorithm is to improve the diversities of base learners and optimize the ensemble strategies. To address these problems, we propose a clustering ensemble framework that consists of three parts. First, three view transformation methods, including random principal component analysis, random nearest neighbor, and modified fuzzy extension model, are used as base learners to learn different clustering views. A random transformation and hybrid multiview learning-based clustering ensemble method (RTHMC) is then designed to synthesize the multiview clustering results. Second, a new random subspace transformation is integrated into RTHMC to enhance its performance. Finally, a view-based self-evolutionary strategy is developed to further improve the proposed method by optimizing random subspace sets. Experiments and comparisons demonstrate the effectiveness and superiority of the proposed method for clustering different kinds of data." @default.
- W3111181422 created "2020-12-21" @default.
- W3111181422 creator A5013761794 @default.
- W3111181422 creator A5026342032 @default.
- W3111181422 creator A5046710292 @default.
- W3111181422 creator A5049531727 @default.
- W3111181422 date "2022-07-01" @default.
- W3111181422 modified "2023-10-16" @default.
- W3111181422 title "Clustering Ensemble Based on Hybrid Multiview Clustering" @default.
- W3111181422 cites W1919721856 @default.
- W3111181422 cites W1971829078 @default.
- W3111181422 cites W1973892392 @default.
- W3111181422 cites W1979117876 @default.
- W3111181422 cites W1992652404 @default.
- W3111181422 cites W1997996331 @default.
- W3111181422 cites W1999077402 @default.
- W3111181422 cites W2016038648 @default.
- W3111181422 cites W2019247858 @default.
- W3111181422 cites W2026236384 @default.
- W3111181422 cites W2041005615 @default.
- W3111181422 cites W2052591306 @default.
- W3111181422 cites W2054564636 @default.
- W3111181422 cites W2059355863 @default.
- W3111181422 cites W2068955495 @default.
- W3111181422 cites W2074683386 @default.
- W3111181422 cites W2076086957 @default.
- W3111181422 cites W2079953837 @default.
- W3111181422 cites W2081549451 @default.
- W3111181422 cites W2090225689 @default.
- W3111181422 cites W2099984621 @default.
- W3111181422 cites W2103537693 @default.
- W3111181422 cites W2105610271 @default.
- W3111181422 cites W2107021927 @default.
- W3111181422 cites W2108343180 @default.
- W3111181422 cites W2108502868 @default.
- W3111181422 cites W2109566206 @default.
- W3111181422 cites W2115346774 @default.
- W3111181422 cites W2116984363 @default.
- W3111181422 cites W2121175492 @default.
- W3111181422 cites W2121947440 @default.
- W3111181422 cites W2126739537 @default.
- W3111181422 cites W2128087969 @default.
- W3111181422 cites W2141429283 @default.
- W3111181422 cites W2142674578 @default.
- W3111181422 cites W2144419338 @default.
- W3111181422 cites W2153293405 @default.
- W3111181422 cites W2160205098 @default.
- W3111181422 cites W2160437295 @default.
- W3111181422 cites W2164800394 @default.
- W3111181422 cites W2169529055 @default.
- W3111181422 cites W2170007150 @default.
- W3111181422 cites W2246020168 @default.
- W3111181422 cites W2416590358 @default.
- W3111181422 cites W2568618480 @default.
- W3111181422 cites W2570942281 @default.
- W3111181422 cites W257840389 @default.
- W3111181422 cites W2610068334 @default.
- W3111181422 cites W2738582126 @default.
- W3111181422 cites W2764270061 @default.
- W3111181422 cites W2793073217 @default.
- W3111181422 cites W2794937634 @default.
- W3111181422 cites W2799747333 @default.
- W3111181422 cites W2898001860 @default.
- W3111181422 cites W2932798335 @default.
- W3111181422 cites W2952171869 @default.
- W3111181422 cites W3011591206 @default.
- W3111181422 cites W3101747232 @default.
- W3111181422 cites W3121769020 @default.
- W3111181422 cites W4244030505 @default.
- W3111181422 doi "https://doi.org/10.1109/tcyb.2020.3034157" @default.
- W3111181422 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33284761" @default.
- W3111181422 hasPublicationYear "2022" @default.
- W3111181422 type Work @default.
- W3111181422 sameAs 3111181422 @default.
- W3111181422 citedByCount "3" @default.
- W3111181422 countsByYear W31111814222023 @default.
- W3111181422 crossrefType "journal-article" @default.
- W3111181422 hasAuthorship W3111181422A5013761794 @default.
- W3111181422 hasAuthorship W3111181422A5026342032 @default.
- W3111181422 hasAuthorship W3111181422A5046710292 @default.
- W3111181422 hasAuthorship W3111181422A5049531727 @default.
- W3111181422 hasConcept C104047586 @default.
- W3111181422 hasConcept C104317684 @default.
- W3111181422 hasConcept C119857082 @default.
- W3111181422 hasConcept C124101348 @default.
- W3111181422 hasConcept C153180895 @default.
- W3111181422 hasConcept C154945302 @default.
- W3111181422 hasConcept C17212007 @default.
- W3111181422 hasConcept C184509293 @default.
- W3111181422 hasConcept C185592680 @default.
- W3111181422 hasConcept C186767784 @default.
- W3111181422 hasConcept C193143536 @default.
- W3111181422 hasConcept C204241405 @default.
- W3111181422 hasConcept C22648726 @default.
- W3111181422 hasConcept C33704608 @default.
- W3111181422 hasConcept C39235581 @default.
- W3111181422 hasConcept C41008148 @default.
- W3111181422 hasConcept C45942800 @default.