Matches in SemOpenAlex for { <https://semopenalex.org/work/W3111192536> ?p ?o ?g. }
- W3111192536 endingPage "112235" @default.
- W3111192536 startingPage "112235" @default.
- W3111192536 abstract "Much attention is paid to the estimation of forest biomass-related variables (stem volume and above-ground biomass) with synthetic aperture radar (SAR) backscatter images because of the increasing number of sensors in space providing global and repeated coverage and the sensitivity of the backscattered intensity to forest properties. One of the most popular models used to estimate a biomass-related variable from SAR backscatter observations is the Water Cloud Model (WCM) because of its simplicity allowing for a straightforward retrieval. Nonetheless, a common feature of these estimates is the tendency to over- or underestimate specific ranges due to simplifying assumptions in the model. In this study, the WCM has been revisited by exploring pathways for a physically-based, Light Detection and Ranging (LiDAR)-aided, model parameterization at larger scale with the overall aim to reduce systematic retrieval errors associated with empirical assumptions in the model. The study was undertaken in Sweden where repeated observations of backscatter by the Advanced Land Observing Satellite (ALOS) Phased Array-type L-band Synthetic Aperture Radar (PALSAR) were available. The integration was prototyped in Sweden thanks to detailed allometries relating forest variables in the WCM. These were derived from spatially dense estimates of canopy density and vegetation height from observations by the Ice, Cloud and land Elevation Satellite (ICESat) Geoscience Laser Altimeter System (GLAS) and measurements of height and stem volume from the Swedish National Forest Inventory (NFI). The SAR backscatter predicted by the revisited WCM was in strong agreement with the observations. When evaluated against stem volumes estimated from the NFI data, the SAR-based stem volumes presented strong dispersion at the pixel level. Average stem volume at the level of five or more pixels, i.e., for an area larger than 0.3 ha, were instead unbiased and similar to the average values obtained from the NFI data (relative root mean square error: 21.4%, estimation bias: 0.9 m3/ha and coefficient of determination: 0.67). This study demonstrates that the integration of allometries in the WCM effectively reduces estimation errors. The method here prototyped in Sweden qualifies to provide large-scale estimates of biomass-related variables using multiple observations of L-band backscatter with potential application worldwide." @default.
- W3111192536 created "2020-12-21" @default.
- W3111192536 creator A5009216756 @default.
- W3111192536 creator A5019969027 @default.
- W3111192536 creator A5030312300 @default.
- W3111192536 date "2021-02-01" @default.
- W3111192536 modified "2023-09-23" @default.
- W3111192536 title "Integration of allometric equations in the water cloud model towards an improved retrieval of forest stem volume with L-band SAR data in Sweden" @default.
- W3111192536 cites W1969245801 @default.
- W3111192536 cites W1973681195 @default.
- W3111192536 cites W1977526892 @default.
- W3111192536 cites W1981213426 @default.
- W3111192536 cites W1981263865 @default.
- W3111192536 cites W1991341257 @default.
- W3111192536 cites W1991755704 @default.
- W3111192536 cites W1993918722 @default.
- W3111192536 cites W1995602130 @default.
- W3111192536 cites W2001072984 @default.
- W3111192536 cites W2004190028 @default.
- W3111192536 cites W2007393964 @default.
- W3111192536 cites W2012519352 @default.
- W3111192536 cites W2023650823 @default.
- W3111192536 cites W2024818588 @default.
- W3111192536 cites W2029244515 @default.
- W3111192536 cites W2040112175 @default.
- W3111192536 cites W2053886687 @default.
- W3111192536 cites W2054581021 @default.
- W3111192536 cites W2063826781 @default.
- W3111192536 cites W2074593887 @default.
- W3111192536 cites W2076018876 @default.
- W3111192536 cites W2076697540 @default.
- W3111192536 cites W2084952127 @default.
- W3111192536 cites W2086068902 @default.
- W3111192536 cites W2087674734 @default.
- W3111192536 cites W2088854144 @default.
- W3111192536 cites W2092911007 @default.
- W3111192536 cites W2101354384 @default.
- W3111192536 cites W2105294988 @default.
- W3111192536 cites W2110263055 @default.
- W3111192536 cites W2111449514 @default.
- W3111192536 cites W2112144785 @default.
- W3111192536 cites W2121853134 @default.
- W3111192536 cites W2129061633 @default.
- W3111192536 cites W2135902118 @default.
- W3111192536 cites W2141607694 @default.
- W3111192536 cites W2143210426 @default.
- W3111192536 cites W2143600141 @default.
- W3111192536 cites W2144499995 @default.
- W3111192536 cites W2147475079 @default.
- W3111192536 cites W2152269371 @default.
- W3111192536 cites W2156374693 @default.
- W3111192536 cites W2157286661 @default.
- W3111192536 cites W2158031389 @default.
- W3111192536 cites W2158040348 @default.
- W3111192536 cites W2159686512 @default.
- W3111192536 cites W2162543713 @default.
- W3111192536 cites W2165432951 @default.
- W3111192536 cites W2166516820 @default.
- W3111192536 cites W2469104120 @default.
- W3111192536 cites W2537499819 @default.
- W3111192536 cites W2602986670 @default.
- W3111192536 cites W2777772327 @default.
- W3111192536 cites W2796746338 @default.
- W3111192536 cites W2804910112 @default.
- W3111192536 cites W2883160006 @default.
- W3111192536 cites W2936743780 @default.
- W3111192536 cites W2954757802 @default.
- W3111192536 cites W2957496006 @default.
- W3111192536 doi "https://doi.org/10.1016/j.rse.2020.112235" @default.
- W3111192536 hasPublicationYear "2021" @default.
- W3111192536 type Work @default.
- W3111192536 sameAs 3111192536 @default.
- W3111192536 citedByCount "16" @default.
- W3111192536 countsByYear W31111925362021 @default.
- W3111192536 countsByYear W31111925362022 @default.
- W3111192536 countsByYear W31111925362023 @default.
- W3111192536 crossrefType "journal-article" @default.
- W3111192536 hasAuthorship W3111192536A5009216756 @default.
- W3111192536 hasAuthorship W3111192536A5019969027 @default.
- W3111192536 hasAuthorship W3111192536A5030312300 @default.
- W3111192536 hasConcept C111368507 @default.
- W3111192536 hasConcept C115540264 @default.
- W3111192536 hasConcept C121332964 @default.
- W3111192536 hasConcept C127313418 @default.
- W3111192536 hasConcept C127413603 @default.
- W3111192536 hasConcept C142724271 @default.
- W3111192536 hasConcept C146978453 @default.
- W3111192536 hasConcept C153294291 @default.
- W3111192536 hasConcept C17534553 @default.
- W3111192536 hasConcept C19269812 @default.
- W3111192536 hasConcept C20556612 @default.
- W3111192536 hasConcept C205649164 @default.
- W3111192536 hasConcept C2776133958 @default.
- W3111192536 hasConcept C2778755073 @default.
- W3111192536 hasConcept C30354325 @default.
- W3111192536 hasConcept C39432304 @default.
- W3111192536 hasConcept C41008148 @default.
- W3111192536 hasConcept C51399673 @default.