Matches in SemOpenAlex for { <https://semopenalex.org/work/W3111241815> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3111241815 endingPage "294" @default.
- W3111241815 startingPage "285" @default.
- W3111241815 abstract "Abstract Late research has established the critical environmental, health and social impacts of traffic in highly populated urban regions. Apart from traffic monitoring, textual analysis of geo-located social media responses can provide an intelligent means in detecting and classifying traffic related events. This paper deals with the content analysis of Twitter textual data using an ensemble of supervised and unsupervised Machine Learning methods in order to cluster and properly classify traffic related events. Voluminous textual data was gathered using innovative Twitter APIs and managed by Big Data cloud methodologies via an Apache Spark system. Events were detected using a traffic related typology and the clustering K-Means model, where related event classification was achieved applying Support Vector Machines (SVM), Convolutional Neural Networks (CNN) and Long Short Term Memory (LSTM) networks. We provide experimental results for 2-class and 3-class classification examples indicating that the ensemble performs with accuracy and F-score reaching 98.5%." @default.
- W3111241815 created "2020-12-21" @default.
- W3111241815 creator A5011809135 @default.
- W3111241815 creator A5087526260 @default.
- W3111241815 date "2020-11-26" @default.
- W3111241815 modified "2023-10-11" @default.
- W3111241815 title "Exploring an Ensemble of Textual Machine Learning Methodologies for Traffic Event Detection and Classification" @default.
- W3111241815 cites W1832693441 @default.
- W3111241815 cites W1847448467 @default.
- W3111241815 cites W1918839972 @default.
- W3111241815 cites W1982029265 @default.
- W3111241815 cites W1989597542 @default.
- W3111241815 cites W2066377449 @default.
- W3111241815 cites W2098162425 @default.
- W3111241815 cites W2299239789 @default.
- W3111241815 cites W2556216103 @default.
- W3111241815 cites W2626126425 @default.
- W3111241815 cites W2640252219 @default.
- W3111241815 cites W2811000347 @default.
- W3111241815 cites W2884381639 @default.
- W3111241815 cites W2896443452 @default.
- W3111241815 cites W2904159299 @default.
- W3111241815 cites W2905908970 @default.
- W3111241815 cites W2910965811 @default.
- W3111241815 cites W2946045887 @default.
- W3111241815 cites W2966984844 @default.
- W3111241815 cites W2972818416 @default.
- W3111241815 cites W2997117061 @default.
- W3111241815 cites W3011204221 @default.
- W3111241815 cites W3017953853 @default.
- W3111241815 cites W3024743437 @default.
- W3111241815 cites W3033087404 @default.
- W3111241815 doi "https://doi.org/10.2478/ttj-2020-0023" @default.
- W3111241815 hasPublicationYear "2020" @default.
- W3111241815 type Work @default.
- W3111241815 sameAs 3111241815 @default.
- W3111241815 citedByCount "3" @default.
- W3111241815 countsByYear W31112418152022 @default.
- W3111241815 crossrefType "journal-article" @default.
- W3111241815 hasAuthorship W3111241815A5011809135 @default.
- W3111241815 hasAuthorship W3111241815A5087526260 @default.
- W3111241815 hasBestOaLocation W31112418151 @default.
- W3111241815 hasConcept C119857082 @default.
- W3111241815 hasConcept C121332964 @default.
- W3111241815 hasConcept C12267149 @default.
- W3111241815 hasConcept C124101348 @default.
- W3111241815 hasConcept C154945302 @default.
- W3111241815 hasConcept C199360897 @default.
- W3111241815 hasConcept C2777212361 @default.
- W3111241815 hasConcept C2779662365 @default.
- W3111241815 hasConcept C2781215313 @default.
- W3111241815 hasConcept C41008148 @default.
- W3111241815 hasConcept C45942800 @default.
- W3111241815 hasConcept C62520636 @default.
- W3111241815 hasConcept C73555534 @default.
- W3111241815 hasConcept C75684735 @default.
- W3111241815 hasConcept C81363708 @default.
- W3111241815 hasConceptScore W3111241815C119857082 @default.
- W3111241815 hasConceptScore W3111241815C121332964 @default.
- W3111241815 hasConceptScore W3111241815C12267149 @default.
- W3111241815 hasConceptScore W3111241815C124101348 @default.
- W3111241815 hasConceptScore W3111241815C154945302 @default.
- W3111241815 hasConceptScore W3111241815C199360897 @default.
- W3111241815 hasConceptScore W3111241815C2777212361 @default.
- W3111241815 hasConceptScore W3111241815C2779662365 @default.
- W3111241815 hasConceptScore W3111241815C2781215313 @default.
- W3111241815 hasConceptScore W3111241815C41008148 @default.
- W3111241815 hasConceptScore W3111241815C45942800 @default.
- W3111241815 hasConceptScore W3111241815C62520636 @default.
- W3111241815 hasConceptScore W3111241815C73555534 @default.
- W3111241815 hasConceptScore W3111241815C75684735 @default.
- W3111241815 hasConceptScore W3111241815C81363708 @default.
- W3111241815 hasIssue "4" @default.
- W3111241815 hasLocation W31112418151 @default.
- W3111241815 hasOpenAccess W3111241815 @default.
- W3111241815 hasPrimaryLocation W31112418151 @default.
- W3111241815 hasRelatedWork W2996933976 @default.
- W3111241815 hasRelatedWork W3014677683 @default.
- W3111241815 hasRelatedWork W3108892885 @default.
- W3111241815 hasRelatedWork W3136076031 @default.
- W3111241815 hasRelatedWork W3136979370 @default.
- W3111241815 hasRelatedWork W3170420960 @default.
- W3111241815 hasRelatedWork W3194539120 @default.
- W3111241815 hasRelatedWork W4205958290 @default.
- W3111241815 hasRelatedWork W4285503465 @default.
- W3111241815 hasRelatedWork W4285741730 @default.
- W3111241815 hasVolume "21" @default.
- W3111241815 isParatext "false" @default.
- W3111241815 isRetracted "false" @default.
- W3111241815 magId "3111241815" @default.
- W3111241815 workType "article" @default.