Matches in SemOpenAlex for { <https://semopenalex.org/work/W3111282016> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3111282016 endingPage "84" @default.
- W3111282016 startingPage "67" @default.
- W3111282016 abstract "Fog, edge and pervasive computing are technologies developed to overcome the limitations of cloud computing. In this chapter we will cover the role of various machine learning, deep learning frameworks, techniques and algorithms in fog, edge and pervasive computing. Latency, privacy, and bandwidth are some of the limitations or problems with the cloud computing and in this chapter, we will discuss how machine learning combined with these computing technologies can help to overcome the limitations of cloud computing. Inferencing is the main challenge in using machine learning or deep learning models, this chapter covers the various frameworks that help to provide inference and quantize the models. Even machine learning has some advantages and disadvantages, in this chapter we will cover the advantages and disadvantages of using machine learning in edge/fog/pervasive computing. We will also cover the various studies done by the researchers. Every field has numerous applications, in this chapter we will discuss the few possible applications in this fog era using machine learning techniques. By the end of the chapter you will know about the ML frameworks and the various machine learning algorithms used for fog/edge computing." @default.
- W3111282016 created "2020-12-21" @default.
- W3111282016 creator A5005282924 @default.
- W3111282016 creator A5015462607 @default.
- W3111282016 creator A5026688817 @default.
- W3111282016 creator A5082867728 @default.
- W3111282016 creator A5083951892 @default.
- W3111282016 date "2020-12-07" @default.
- W3111282016 modified "2023-10-16" @default.
- W3111282016 title "Machine Learning Frameworks and Algorithms for Fog and Edge Computing" @default.
- W3111282016 cites W2035060679 @default.
- W3111282016 cites W2898896120 @default.
- W3111282016 cites W2904058395 @default.
- W3111282016 cites W2904383881 @default.
- W3111282016 cites W2942694278 @default.
- W3111282016 cites W2944083578 @default.
- W3111282016 cites W2946603056 @default.
- W3111282016 cites W2963248736 @default.
- W3111282016 cites W2963705844 @default.
- W3111282016 cites W2963769988 @default.
- W3111282016 cites W2964217848 @default.
- W3111282016 cites W2966645774 @default.
- W3111282016 cites W2970361472 @default.
- W3111282016 cites W2978053749 @default.
- W3111282016 doi "https://doi.org/10.1002/9781119670087.ch4" @default.
- W3111282016 hasPublicationYear "2020" @default.
- W3111282016 type Work @default.
- W3111282016 sameAs 3111282016 @default.
- W3111282016 citedByCount "1" @default.
- W3111282016 countsByYear W31112820162023 @default.
- W3111282016 crossrefType "other" @default.
- W3111282016 hasAuthorship W3111282016A5005282924 @default.
- W3111282016 hasAuthorship W3111282016A5015462607 @default.
- W3111282016 hasAuthorship W3111282016A5026688817 @default.
- W3111282016 hasAuthorship W3111282016A5082867728 @default.
- W3111282016 hasAuthorship W3111282016A5083951892 @default.
- W3111282016 hasConcept C108583219 @default.
- W3111282016 hasConcept C111919701 @default.
- W3111282016 hasConcept C11413529 @default.
- W3111282016 hasConcept C119857082 @default.
- W3111282016 hasConcept C154945302 @default.
- W3111282016 hasConcept C162307627 @default.
- W3111282016 hasConcept C2522767166 @default.
- W3111282016 hasConcept C2776214188 @default.
- W3111282016 hasConcept C2778456923 @default.
- W3111282016 hasConcept C41008148 @default.
- W3111282016 hasConcept C79974875 @default.
- W3111282016 hasConceptScore W3111282016C108583219 @default.
- W3111282016 hasConceptScore W3111282016C111919701 @default.
- W3111282016 hasConceptScore W3111282016C11413529 @default.
- W3111282016 hasConceptScore W3111282016C119857082 @default.
- W3111282016 hasConceptScore W3111282016C154945302 @default.
- W3111282016 hasConceptScore W3111282016C162307627 @default.
- W3111282016 hasConceptScore W3111282016C2522767166 @default.
- W3111282016 hasConceptScore W3111282016C2776214188 @default.
- W3111282016 hasConceptScore W3111282016C2778456923 @default.
- W3111282016 hasConceptScore W3111282016C41008148 @default.
- W3111282016 hasConceptScore W3111282016C79974875 @default.
- W3111282016 hasLocation W31112820161 @default.
- W3111282016 hasOpenAccess W3111282016 @default.
- W3111282016 hasPrimaryLocation W31112820161 @default.
- W3111282016 hasRelatedWork W2942586735 @default.
- W3111282016 hasRelatedWork W2956163139 @default.
- W3111282016 hasRelatedWork W2979760315 @default.
- W3111282016 hasRelatedWork W2995938785 @default.
- W3111282016 hasRelatedWork W4223488648 @default.
- W3111282016 hasRelatedWork W4225706866 @default.
- W3111282016 hasRelatedWork W4244478748 @default.
- W3111282016 hasRelatedWork W4321606826 @default.
- W3111282016 hasRelatedWork W4324372666 @default.
- W3111282016 hasRelatedWork W4386004629 @default.
- W3111282016 isParatext "false" @default.
- W3111282016 isRetracted "false" @default.
- W3111282016 magId "3111282016" @default.
- W3111282016 workType "other" @default.