Matches in SemOpenAlex for { <https://semopenalex.org/work/W3111375273> ?p ?o ?g. }
- W3111375273 endingPage "4007" @default.
- W3111375273 startingPage "4007" @default.
- W3111375273 abstract "The increasing amount of information acquired by imaging sensors in Earth Sciences results in the availability of a multitude of complementary data (e.g., spectral, spatial, elevation) for monitoring of the Earth’s surface. Many studies were devoted to investigating the usage of multi-sensor data sets in the performance of supervised learning-based approaches at various tasks (i.e., classification and regression) while unsupervised learning-based approaches have received less attention. In this paper, we propose a new approach to fuse multiple data sets from imaging sensors using a multi-sensor sparse-based clustering algorithm (Multi-SSC). A technique for the extraction of spatial features (i.e., morphological profiles (MPs) and invariant attribute profiles (IAPs)) is applied to high spatial-resolution data to derive the spatial and contextual information. This information is then fused with spectrally rich data such as multi- or hyperspectral data. In order to fuse multi-sensor data sets a hierarchical sparse subspace clustering approach is employed. More specifically, a lasso-based binary algorithm is used to fuse the spectral and spatial information prior to automatic clustering. The proposed framework ensures that the generated clustering map is smooth and preserves the spatial structures of the scene. In order to evaluate the generalization capability of the proposed approach, we investigate its performance not only on diverse scenes but also on different sensors and data types. The first two data sets are geological data sets, which consist of hyperspectral and RGB data. The third data set is the well-known benchmark Trento data set, including hyperspectral and LiDAR data. Experimental results indicate that this novel multi-sensor clustering algorithm can provide an accurate clustering map compared to the state-of-the-art sparse subspace-based clustering algorithms." @default.
- W3111375273 created "2020-12-21" @default.
- W3111375273 creator A5009310543 @default.
- W3111375273 creator A5042657950 @default.
- W3111375273 creator A5067490750 @default.
- W3111375273 creator A5074919292 @default.
- W3111375273 creator A5075284536 @default.
- W3111375273 creator A5086519517 @default.
- W3111375273 date "2020-12-07" @default.
- W3111375273 modified "2023-10-06" @default.
- W3111375273 title "Data Fusion Using a Multi-Sensor Sparse-Based Clustering Algorithm" @default.
- W3111375273 cites W1993962865 @default.
- W3111375273 cites W2008213480 @default.
- W3111375273 cites W2010797000 @default.
- W3111375273 cites W2063978378 @default.
- W3111375273 cites W2077792904 @default.
- W3111375273 cites W2098057602 @default.
- W3111375273 cites W2106277226 @default.
- W3111375273 cites W2110726819 @default.
- W3111375273 cites W2114819256 @default.
- W3111375273 cites W2115451191 @default.
- W3111375273 cites W2118246710 @default.
- W3111375273 cites W2127199143 @default.
- W3111375273 cites W2129630294 @default.
- W3111375273 cites W2131659181 @default.
- W3111375273 cites W2132914434 @default.
- W3111375273 cites W2133751300 @default.
- W3111375273 cites W2159070926 @default.
- W3111375273 cites W2313932751 @default.
- W3111375273 cites W2323180518 @default.
- W3111375273 cites W2485894745 @default.
- W3111375273 cites W2579656072 @default.
- W3111375273 cites W2601026776 @default.
- W3111375273 cites W2603834682 @default.
- W3111375273 cites W2606929568 @default.
- W3111375273 cites W2624240493 @default.
- W3111375273 cites W2625894731 @default.
- W3111375273 cites W2767805377 @default.
- W3111375273 cites W2782517596 @default.
- W3111375273 cites W2790946355 @default.
- W3111375273 cites W2792587637 @default.
- W3111375273 cites W2890026924 @default.
- W3111375273 cites W2894165434 @default.
- W3111375273 cites W2897452159 @default.
- W3111375273 cites W2898190873 @default.
- W3111375273 cites W2912813928 @default.
- W3111375273 cites W2916564579 @default.
- W3111375273 cites W2921401402 @default.
- W3111375273 cites W2923136550 @default.
- W3111375273 cites W2949182166 @default.
- W3111375273 cites W2994545211 @default.
- W3111375273 cites W2994639710 @default.
- W3111375273 cites W2995201943 @default.
- W3111375273 cites W3007359962 @default.
- W3111375273 cites W3016100336 @default.
- W3111375273 cites W3041991648 @default.
- W3111375273 cites W3045568867 @default.
- W3111375273 cites W3047000149 @default.
- W3111375273 cites W3082700671 @default.
- W3111375273 cites W3091256251 @default.
- W3111375273 cites W3095698201 @default.
- W3111375273 cites W4235169531 @default.
- W3111375273 cites W4250657332 @default.
- W3111375273 doi "https://doi.org/10.3390/rs12234007" @default.
- W3111375273 hasPublicationYear "2020" @default.
- W3111375273 type Work @default.
- W3111375273 sameAs 3111375273 @default.
- W3111375273 citedByCount "5" @default.
- W3111375273 countsByYear W31113752732021 @default.
- W3111375273 countsByYear W31113752732022 @default.
- W3111375273 countsByYear W31113752732023 @default.
- W3111375273 crossrefType "journal-article" @default.
- W3111375273 hasAuthorship W3111375273A5009310543 @default.
- W3111375273 hasAuthorship W3111375273A5042657950 @default.
- W3111375273 hasAuthorship W3111375273A5067490750 @default.
- W3111375273 hasAuthorship W3111375273A5074919292 @default.
- W3111375273 hasAuthorship W3111375273A5075284536 @default.
- W3111375273 hasAuthorship W3111375273A5086519517 @default.
- W3111375273 hasBestOaLocation W31113752731 @default.
- W3111375273 hasConcept C119599485 @default.
- W3111375273 hasConcept C124101348 @default.
- W3111375273 hasConcept C127313418 @default.
- W3111375273 hasConcept C127413603 @default.
- W3111375273 hasConcept C141353440 @default.
- W3111375273 hasConcept C153180895 @default.
- W3111375273 hasConcept C154945302 @default.
- W3111375273 hasConcept C159078339 @default.
- W3111375273 hasConcept C159620131 @default.
- W3111375273 hasConcept C33954974 @default.
- W3111375273 hasConcept C41008148 @default.
- W3111375273 hasConcept C58489278 @default.
- W3111375273 hasConcept C62649853 @default.
- W3111375273 hasConcept C73555534 @default.
- W3111375273 hasConceptScore W3111375273C119599485 @default.
- W3111375273 hasConceptScore W3111375273C124101348 @default.
- W3111375273 hasConceptScore W3111375273C127313418 @default.
- W3111375273 hasConceptScore W3111375273C127413603 @default.
- W3111375273 hasConceptScore W3111375273C141353440 @default.