Matches in SemOpenAlex for { <https://semopenalex.org/work/W3111490441> ?p ?o ?g. }
- W3111490441 endingPage "219446" @default.
- W3111490441 startingPage "219430" @default.
- W3111490441 abstract "Cloud elasticity involves timely provisioning and de-provisioning of computing resources and adjusting resources size to meet the dynamic workload demand. This requires fast, and accurate resource scaling methods at minimum cost (e.g. pay as you go) that match with workload demands. Two dynamic changing parameters must be defined in an elastic model, the workload resource demand classes, and the data center resource reconfiguration classes. These parameters are not labeled for cloud management system while data center logs are being captured. Building an advance elastic model is a critical task, which defines multiple classes under these two categories i.e. for workload and for provisioning. A dynamic method is therefore required to define (during configuration time window) the workload classes and resource provisioning classes. Unsupervised learning model such as K-Means has many challenges such as time complexity, selection of optimum number of clusters (representing the classes), and determining centroid values of the clusters. All clustering methods depend on minimizing mean square error between center of population in same class member. These methods are often enhanced using guidelines to find out the centroids, but they suffer from K-Means limitations. For the application of clustering cloud log traces, most of the reported work use K-Means clustering to label workload types. However, there is no work reported that label data center scaling classes. In this work, a novel method is proposed to analyze the characteristics of both workloads and datacenter configurations using clustering method, and is based on random variable model transformation (kernel density estimator) guide. This method enhances K-Means clustering by automatically determining optimum number of classes and finding the mean centroids for the clusters. In addition, it improves the accuracy and the time complexity of standard K-Means clustering model, by best correlating between clustering attributes using statistical correlation methods." @default.
- W3111490441 created "2020-12-21" @default.
- W3111490441 creator A5017410471 @default.
- W3111490441 creator A5041665428 @default.
- W3111490441 creator A5047884267 @default.
- W3111490441 creator A5072134441 @default.
- W3111490441 date "2020-01-01" @default.
- W3111490441 modified "2023-09-23" @default.
- W3111490441 title "Dynamic K-Means Clustering of Workload and Cloud Resource Configuration for Cloud Elastic Model" @default.
- W3111490441 cites W1887369574 @default.
- W3111490441 cites W1985770928 @default.
- W3111490441 cites W2014721449 @default.
- W3111490441 cites W2022185273 @default.
- W3111490441 cites W2067005380 @default.
- W3111490441 cites W2073965851 @default.
- W3111490441 cites W2085384547 @default.
- W3111490441 cites W2181523240 @default.
- W3111490441 cites W2529873830 @default.
- W3111490441 cites W2560224827 @default.
- W3111490441 cites W2575635164 @default.
- W3111490441 cites W2587964702 @default.
- W3111490441 cites W2734894858 @default.
- W3111490441 cites W2783873903 @default.
- W3111490441 cites W2789609185 @default.
- W3111490441 cites W2808671021 @default.
- W3111490441 cites W2884851420 @default.
- W3111490441 cites W2889289513 @default.
- W3111490441 cites W2899301279 @default.
- W3111490441 cites W2916242076 @default.
- W3111490441 cites W2952868316 @default.
- W3111490441 cites W2963155467 @default.
- W3111490441 cites W2970278883 @default.
- W3111490441 cites W2973192993 @default.
- W3111490441 cites W2975995881 @default.
- W3111490441 cites W2979471321 @default.
- W3111490441 cites W2981559576 @default.
- W3111490441 cites W2982262733 @default.
- W3111490441 cites W2998827957 @default.
- W3111490441 cites W3018825982 @default.
- W3111490441 cites W3019983361 @default.
- W3111490441 cites W3104298728 @default.
- W3111490441 cites W4233014035 @default.
- W3111490441 doi "https://doi.org/10.1109/access.2020.3042716" @default.
- W3111490441 hasPublicationYear "2020" @default.
- W3111490441 type Work @default.
- W3111490441 sameAs 3111490441 @default.
- W3111490441 citedByCount "2" @default.
- W3111490441 countsByYear W31114904412022 @default.
- W3111490441 crossrefType "journal-article" @default.
- W3111490441 hasAuthorship W3111490441A5017410471 @default.
- W3111490441 hasAuthorship W3111490441A5041665428 @default.
- W3111490441 hasAuthorship W3111490441A5047884267 @default.
- W3111490441 hasAuthorship W3111490441A5072134441 @default.
- W3111490441 hasBestOaLocation W31114904411 @default.
- W3111490441 hasConcept C111919701 @default.
- W3111490441 hasConcept C119701452 @default.
- W3111490441 hasConcept C119857082 @default.
- W3111490441 hasConcept C120314980 @default.
- W3111490441 hasConcept C124101348 @default.
- W3111490441 hasConcept C146599234 @default.
- W3111490441 hasConcept C149635348 @default.
- W3111490441 hasConcept C153740404 @default.
- W3111490441 hasConcept C154945302 @default.
- W3111490441 hasConcept C172191483 @default.
- W3111490441 hasConcept C2778476105 @default.
- W3111490441 hasConcept C31258907 @default.
- W3111490441 hasConcept C41008148 @default.
- W3111490441 hasConcept C73555534 @default.
- W3111490441 hasConcept C79974875 @default.
- W3111490441 hasConceptScore W3111490441C111919701 @default.
- W3111490441 hasConceptScore W3111490441C119701452 @default.
- W3111490441 hasConceptScore W3111490441C119857082 @default.
- W3111490441 hasConceptScore W3111490441C120314980 @default.
- W3111490441 hasConceptScore W3111490441C124101348 @default.
- W3111490441 hasConceptScore W3111490441C146599234 @default.
- W3111490441 hasConceptScore W3111490441C149635348 @default.
- W3111490441 hasConceptScore W3111490441C153740404 @default.
- W3111490441 hasConceptScore W3111490441C154945302 @default.
- W3111490441 hasConceptScore W3111490441C172191483 @default.
- W3111490441 hasConceptScore W3111490441C2778476105 @default.
- W3111490441 hasConceptScore W3111490441C31258907 @default.
- W3111490441 hasConceptScore W3111490441C41008148 @default.
- W3111490441 hasConceptScore W3111490441C73555534 @default.
- W3111490441 hasConceptScore W3111490441C79974875 @default.
- W3111490441 hasFunder F4320334593 @default.
- W3111490441 hasLocation W31114904411 @default.
- W3111490441 hasLocation W31114904412 @default.
- W3111490441 hasOpenAccess W3111490441 @default.
- W3111490441 hasPrimaryLocation W31114904411 @default.
- W3111490441 hasRelatedWork W1575758330 @default.
- W3111490441 hasRelatedWork W1981716234 @default.
- W3111490441 hasRelatedWork W2003519967 @default.
- W3111490441 hasRelatedWork W2025852542 @default.
- W3111490441 hasRelatedWork W2036821173 @default.
- W3111490441 hasRelatedWork W2065993081 @default.
- W3111490441 hasRelatedWork W2077541928 @default.
- W3111490441 hasRelatedWork W2794269296 @default.
- W3111490441 hasRelatedWork W3026163998 @default.