Matches in SemOpenAlex for { <https://semopenalex.org/work/W3111526057> ?p ?o ?g. }
- W3111526057 endingPage "070501" @default.
- W3111526057 startingPage "070501" @default.
- W3111526057 abstract "A classic problem in circuit theory first studied by German physicist Kirchhoff more than 170 years ago is the computation of resistances in resistor networks. Nowadays, resistor network has been an important model in the fields of natural science and engineering technology, but it is very difficult to calculate the equivalent resistance between two arbitrary nodes in an arbitrary resistor network. In 2004, Wu F Y formulated a Laplacian matrix method and derived expressions for the two-point resistance in arbitrary finite and infinite lattices in terms of the eigenvalues and eigenvectors of the Laplacian matrix, and the resistance results obtained by Laplacian matrix method is composed of double sums. The weakness of the Laplacian matrix approach is that it depends on the two matrices along two orthogonal directions. In 2011, Tan Z Z created the recursion-transform (RT) method, which can resolve the resistor network with arbitrary boundary. Using the RT method to compute the equivalent resistance relies on just one matrix along one direction, and the resistance is expressed by single summation. In the present paper, we investigate the equivalent resistance and complex impedance of an arbitrary mn cylindrical network by the RT method. Firstly, based on the network analysis, a recursion relation between the current distributions on three successive vertical lines is established through a matrix equation. In order to obtain the eigenvalues and eigenvectors of the matrix, and the general solution of the matrix equation, we then perform a diagonalizing transformation on the driving matrix.Secondly, we derive a recursion relation between the current distributions on the boundary, and construct some particular solutions of the matrix equation. Finally by using the matrix equation of inverse transformation, we obtain the analytical solution of the branch current, and gain the equivalent resistance formula along the axis of the arbitrary mn cylindrical network, which consists of the characteristic root and expressed by only single summation. As applications, several new formulae of equivalent resistances in the semi-infinite and infinite cases are given. These formulae are compared with those in other literature, meanwhile an interesting new identity of trigonometric function is discovered. At the end of the article, the equivalent impedance of the mn cylindrical RLC network is also treated, where the equivalent impedance formula is also given." @default.
- W3111526057 created "2020-12-21" @default.
- W3111526057 creator A5005944481 @default.
- W3111526057 creator A5055297909 @default.
- W3111526057 date "2017-01-01" @default.
- W3111526057 modified "2023-10-16" @default.
- W3111526057 title "Calculation of the equivalent resistance and impedance of the cylindrical network based on recursion-transform method" @default.
- W3111526057 cites W1528602401 @default.
- W3111526057 cites W1568472651 @default.
- W3111526057 cites W1749274881 @default.
- W3111526057 cites W1969710941 @default.
- W3111526057 cites W1991430328 @default.
- W3111526057 cites W1996613237 @default.
- W3111526057 cites W2011531424 @default.
- W3111526057 cites W2011747618 @default.
- W3111526057 cites W2029673229 @default.
- W3111526057 cites W2035008295 @default.
- W3111526057 cites W2062695713 @default.
- W3111526057 cites W2103971717 @default.
- W3111526057 cites W2120913663 @default.
- W3111526057 cites W2138912321 @default.
- W3111526057 cites W2139769981 @default.
- W3111526057 cites W2144590228 @default.
- W3111526057 cites W2244124306 @default.
- W3111526057 cites W2254878666 @default.
- W3111526057 cites W2272616382 @default.
- W3111526057 cites W2326035491 @default.
- W3111526057 cites W2346182578 @default.
- W3111526057 cites W2368608995 @default.
- W3111526057 cites W2963435764 @default.
- W3111526057 cites W3102327768 @default.
- W3111526057 cites W3102600143 @default.
- W3111526057 cites W3104239416 @default.
- W3111526057 cites W4247782380 @default.
- W3111526057 doi "https://doi.org/10.7498/aps.66.070501" @default.
- W3111526057 hasPublicationYear "2017" @default.
- W3111526057 type Work @default.
- W3111526057 sameAs 3111526057 @default.
- W3111526057 citedByCount "18" @default.
- W3111526057 countsByYear W31115260572017 @default.
- W3111526057 countsByYear W31115260572018 @default.
- W3111526057 countsByYear W31115260572019 @default.
- W3111526057 countsByYear W31115260572020 @default.
- W3111526057 countsByYear W31115260572021 @default.
- W3111526057 countsByYear W31115260572022 @default.
- W3111526057 countsByYear W31115260572023 @default.
- W3111526057 crossrefType "journal-article" @default.
- W3111526057 hasAuthorship W3111526057A5005944481 @default.
- W3111526057 hasAuthorship W3111526057A5055297909 @default.
- W3111526057 hasBestOaLocation W31115260571 @default.
- W3111526057 hasConcept C106487976 @default.
- W3111526057 hasConcept C113805353 @default.
- W3111526057 hasConcept C11413529 @default.
- W3111526057 hasConcept C114614502 @default.
- W3111526057 hasConcept C115178988 @default.
- W3111526057 hasConcept C121332964 @default.
- W3111526057 hasConcept C134306372 @default.
- W3111526057 hasConcept C137488568 @default.
- W3111526057 hasConcept C158693339 @default.
- W3111526057 hasConcept C159985019 @default.
- W3111526057 hasConcept C165443888 @default.
- W3111526057 hasConcept C165700671 @default.
- W3111526057 hasConcept C165801399 @default.
- W3111526057 hasConcept C168773036 @default.
- W3111526057 hasConcept C17829176 @default.
- W3111526057 hasConcept C184720557 @default.
- W3111526057 hasConcept C192562407 @default.
- W3111526057 hasConcept C33923547 @default.
- W3111526057 hasConcept C39920418 @default.
- W3111526057 hasConcept C62520636 @default.
- W3111526057 hasConceptScore W3111526057C106487976 @default.
- W3111526057 hasConceptScore W3111526057C113805353 @default.
- W3111526057 hasConceptScore W3111526057C11413529 @default.
- W3111526057 hasConceptScore W3111526057C114614502 @default.
- W3111526057 hasConceptScore W3111526057C115178988 @default.
- W3111526057 hasConceptScore W3111526057C121332964 @default.
- W3111526057 hasConceptScore W3111526057C134306372 @default.
- W3111526057 hasConceptScore W3111526057C137488568 @default.
- W3111526057 hasConceptScore W3111526057C158693339 @default.
- W3111526057 hasConceptScore W3111526057C159985019 @default.
- W3111526057 hasConceptScore W3111526057C165443888 @default.
- W3111526057 hasConceptScore W3111526057C165700671 @default.
- W3111526057 hasConceptScore W3111526057C165801399 @default.
- W3111526057 hasConceptScore W3111526057C168773036 @default.
- W3111526057 hasConceptScore W3111526057C17829176 @default.
- W3111526057 hasConceptScore W3111526057C184720557 @default.
- W3111526057 hasConceptScore W3111526057C192562407 @default.
- W3111526057 hasConceptScore W3111526057C33923547 @default.
- W3111526057 hasConceptScore W3111526057C39920418 @default.
- W3111526057 hasConceptScore W3111526057C62520636 @default.
- W3111526057 hasIssue "7" @default.
- W3111526057 hasLocation W31115260571 @default.
- W3111526057 hasOpenAccess W3111526057 @default.
- W3111526057 hasPrimaryLocation W31115260571 @default.
- W3111526057 hasRelatedWork W2540180576 @default.
- W3111526057 hasRelatedWork W2887594348 @default.
- W3111526057 hasRelatedWork W2896947499 @default.
- W3111526057 hasRelatedWork W2951938077 @default.