Matches in SemOpenAlex for { <https://semopenalex.org/work/W3111595142> ?p ?o ?g. }
- W3111595142 endingPage "66" @default.
- W3111595142 startingPage "59" @default.
- W3111595142 abstract "Machine learning (ML) was used to leverage tumor growth inhibition (TGI) metrics to characterize the relationship with overall survival (OS) as a novel approach and to compare with traditional TGI-OS modeling methods. Historical dataset from a phase III non-small cell lung cancer study (OAK, atezolizumab vs. docetaxel, N = 668) was used. ML methods support the validity of TGI metrics in predicting OS. With lasso, the best model with TGI metrics outperforms the best model without TGI metrics. Boosting was the best linear ML method for this dataset with reduced estimation bias and lowest Brier score, suggesting better prediction accuracy. Random forest did not outperform linear ML methods despite hyperparameter optimization. Kernel machine was marginally the best nonlinear ML method for this dataset and uncovered nonlinear and interaction effects. Nonlinear ML may improve prediction by capturing nonlinear effects and covariate interactions, but its predictive performance and value need further evaluation with larger datasets." @default.
- W3111595142 created "2020-12-21" @default.
- W3111595142 creator A5008342464 @default.
- W3111595142 creator A5065578593 @default.
- W3111595142 creator A5078902632 @default.
- W3111595142 creator A5085028455 @default.
- W3111595142 creator A5089235307 @default.
- W3111595142 creator A5090728786 @default.
- W3111595142 date "2020-12-13" @default.
- W3111595142 modified "2023-10-09" @default.
- W3111595142 title "Application of Machine Learning for Tumor Growth Inhibition – Overall Survival Modeling Platform" @default.
- W3111595142 cites W123389327 @default.
- W3111595142 cites W1509693321 @default.
- W3111595142 cites W1578517626 @default.
- W3111595142 cites W1724747758 @default.
- W3111595142 cites W1751671986 @default.
- W3111595142 cites W1971654961 @default.
- W3111595142 cites W1982189141 @default.
- W3111595142 cites W2025266808 @default.
- W3111595142 cites W2027401669 @default.
- W3111595142 cites W2064208261 @default.
- W3111595142 cites W2072976966 @default.
- W3111595142 cites W2073241381 @default.
- W3111595142 cites W2110274812 @default.
- W3111595142 cites W2114633835 @default.
- W3111595142 cites W2131464395 @default.
- W3111595142 cites W2149199519 @default.
- W3111595142 cites W2157345211 @default.
- W3111595142 cites W2158585626 @default.
- W3111595142 cites W2293531514 @default.
- W3111595142 cites W2321536904 @default.
- W3111595142 cites W2331782240 @default.
- W3111595142 cites W2549732652 @default.
- W3111595142 cites W2567564314 @default.
- W3111595142 cites W2622524891 @default.
- W3111595142 cites W2743269518 @default.
- W3111595142 cites W2800526616 @default.
- W3111595142 cites W2895671827 @default.
- W3111595142 cites W2902314063 @default.
- W3111595142 cites W2904637438 @default.
- W3111595142 cites W2910555254 @default.
- W3111595142 cites W2911964244 @default.
- W3111595142 cites W2938094719 @default.
- W3111595142 cites W2989304599 @default.
- W3111595142 cites W2995579012 @default.
- W3111595142 cites W2995961138 @default.
- W3111595142 cites W2999479734 @default.
- W3111595142 cites W2999568963 @default.
- W3111595142 cites W3099478002 @default.
- W3111595142 cites W4250236131 @default.
- W3111595142 cites W3033014601 @default.
- W3111595142 doi "https://doi.org/10.1002/psp4.12576" @default.
- W3111595142 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7825187" @default.
- W3111595142 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33280255" @default.
- W3111595142 hasPublicationYear "2020" @default.
- W3111595142 type Work @default.
- W3111595142 sameAs 3111595142 @default.
- W3111595142 citedByCount "13" @default.
- W3111595142 countsByYear W31115951422021 @default.
- W3111595142 countsByYear W31115951422022 @default.
- W3111595142 countsByYear W31115951422023 @default.
- W3111595142 crossrefType "journal-article" @default.
- W3111595142 hasAuthorship W3111595142A5008342464 @default.
- W3111595142 hasAuthorship W3111595142A5065578593 @default.
- W3111595142 hasAuthorship W3111595142A5078902632 @default.
- W3111595142 hasAuthorship W3111595142A5085028455 @default.
- W3111595142 hasAuthorship W3111595142A5089235307 @default.
- W3111595142 hasAuthorship W3111595142A5090728786 @default.
- W3111595142 hasBestOaLocation W31115951422 @default.
- W3111595142 hasConcept C119043178 @default.
- W3111595142 hasConcept C119857082 @default.
- W3111595142 hasConcept C121332964 @default.
- W3111595142 hasConcept C153083717 @default.
- W3111595142 hasConcept C154945302 @default.
- W3111595142 hasConcept C158622935 @default.
- W3111595142 hasConcept C169258074 @default.
- W3111595142 hasConcept C35405484 @default.
- W3111595142 hasConcept C41008148 @default.
- W3111595142 hasConcept C62520636 @default.
- W3111595142 hasConcept C8642999 @default.
- W3111595142 hasConceptScore W3111595142C119043178 @default.
- W3111595142 hasConceptScore W3111595142C119857082 @default.
- W3111595142 hasConceptScore W3111595142C121332964 @default.
- W3111595142 hasConceptScore W3111595142C153083717 @default.
- W3111595142 hasConceptScore W3111595142C154945302 @default.
- W3111595142 hasConceptScore W3111595142C158622935 @default.
- W3111595142 hasConceptScore W3111595142C169258074 @default.
- W3111595142 hasConceptScore W3111595142C35405484 @default.
- W3111595142 hasConceptScore W3111595142C41008148 @default.
- W3111595142 hasConceptScore W3111595142C62520636 @default.
- W3111595142 hasConceptScore W3111595142C8642999 @default.
- W3111595142 hasIssue "1" @default.
- W3111595142 hasLocation W31115951421 @default.
- W3111595142 hasLocation W31115951422 @default.
- W3111595142 hasLocation W31115951423 @default.
- W3111595142 hasOpenAccess W3111595142 @default.
- W3111595142 hasPrimaryLocation W31115951421 @default.
- W3111595142 hasRelatedWork W3096565539 @default.