Matches in SemOpenAlex for { <https://semopenalex.org/work/W3111736169> ?p ?o ?g. }
- W3111736169 abstract "Synthetic aperture radar (SAR) images are affected by a spatially-correlated and signal-dependent noise called speckle, which is very severe and may hinder image exploitation. Despeckling is an important task that aims at removing such noise, so as to improve the accuracy of all downstream image processing tasks. The first despeckling methods date back to the 1970's, and several model-based algorithms have been developed in the subsequent years. The field has received growing attention, sparkled by the availability of powerful deep learning models that have yielded excellent performance for inverse problems in image processing. This paper surveys the literature on deep learning methods applied to SAR despeckling, covering both the supervised and the more recent self-supervised approaches. We provide a critical analysis of existing methods with the objective to recognize the most promising research lines, to identify the factors that have limited the success of deep models, and to propose ways forward in an attempt to fully exploit the potential of deep learning for SAR despeckling." @default.
- W3111736169 created "2020-12-21" @default.
- W3111736169 creator A5034486931 @default.
- W3111736169 creator A5034757970 @default.
- W3111736169 creator A5058182410 @default.
- W3111736169 creator A5062328236 @default.
- W3111736169 creator A5080842029 @default.
- W3111736169 creator A5081981044 @default.
- W3111736169 date "2020-12-10" @default.
- W3111736169 modified "2023-10-18" @default.
- W3111736169 title "Deep learning methods for SAR image despeckling: trends and perspectives." @default.
- W3111736169 cites W1686810756 @default.
- W3111736169 cites W1901129140 @default.
- W3111736169 cites W1980038761 @default.
- W3111736169 cites W1998339281 @default.
- W3111736169 cites W2004376198 @default.
- W3111736169 cites W2011516671 @default.
- W3111736169 cites W2022459032 @default.
- W3111736169 cites W2035314205 @default.
- W3111736169 cites W2049909233 @default.
- W3111736169 cites W2055388682 @default.
- W3111736169 cites W2056370875 @default.
- W3111736169 cites W2073354982 @default.
- W3111736169 cites W2077282160 @default.
- W3111736169 cites W2079071390 @default.
- W3111736169 cites W2104763670 @default.
- W3111736169 cites W2117294245 @default.
- W3111736169 cites W2121927366 @default.
- W3111736169 cites W2131120753 @default.
- W3111736169 cites W2133954466 @default.
- W3111736169 cites W2144851790 @default.
- W3111736169 cites W2151221869 @default.
- W3111736169 cites W2158347164 @default.
- W3111736169 cites W2159509402 @default.
- W3111736169 cites W2164611927 @default.
- W3111736169 cites W2194775991 @default.
- W3111736169 cites W2508457857 @default.
- W3111736169 cites W2548712274 @default.
- W3111736169 cites W2774929658 @default.
- W3111736169 cites W2809062607 @default.
- W3111736169 cites W2810454813 @default.
- W3111736169 cites W2822747609 @default.
- W3111736169 cites W2897036211 @default.
- W3111736169 cites W2902857081 @default.
- W3111736169 cites W2917903003 @default.
- W3111736169 cites W2948463804 @default.
- W3111736169 cites W2954537798 @default.
- W3111736169 cites W2962737939 @default.
- W3111736169 cites W2963091558 @default.
- W3111736169 cites W2963191028 @default.
- W3111736169 cites W2963583038 @default.
- W3111736169 cites W2963614749 @default.
- W3111736169 cites W2964046397 @default.
- W3111736169 cites W2964046669 @default.
- W3111736169 cites W2964121744 @default.
- W3111736169 cites W2964125708 @default.
- W3111736169 cites W2964204553 @default.
- W3111736169 cites W2969498830 @default.
- W3111736169 cites W2979577547 @default.
- W3111736169 cites W2982082835 @default.
- W3111736169 cites W2984633727 @default.
- W3111736169 cites W2987692439 @default.
- W3111736169 cites W2988553273 @default.
- W3111736169 cites W2994512389 @default.
- W3111736169 cites W2999889284 @default.
- W3111736169 cites W3025007558 @default.
- W3111736169 cites W3033759085 @default.
- W3111736169 cites W3048092834 @default.
- W3111736169 cites W3077327398 @default.
- W3111736169 cites W3088170970 @default.
- W3111736169 cites W3090110926 @default.
- W3111736169 cites W3105433599 @default.
- W3111736169 cites W3127482406 @default.
- W3111736169 hasPublicationYear "2020" @default.
- W3111736169 type Work @default.
- W3111736169 sameAs 3111736169 @default.
- W3111736169 citedByCount "3" @default.
- W3111736169 countsByYear W31117361692021 @default.
- W3111736169 crossrefType "posted-content" @default.
- W3111736169 hasAuthorship W3111736169A5034486931 @default.
- W3111736169 hasAuthorship W3111736169A5034757970 @default.
- W3111736169 hasAuthorship W3111736169A5058182410 @default.
- W3111736169 hasAuthorship W3111736169A5062328236 @default.
- W3111736169 hasAuthorship W3111736169A5080842029 @default.
- W3111736169 hasAuthorship W3111736169A5081981044 @default.
- W3111736169 hasConcept C102290492 @default.
- W3111736169 hasConcept C108583219 @default.
- W3111736169 hasConcept C115961682 @default.
- W3111736169 hasConcept C119857082 @default.
- W3111736169 hasConcept C127413603 @default.
- W3111736169 hasConcept C153180895 @default.
- W3111736169 hasConcept C154945302 @default.
- W3111736169 hasConcept C165696696 @default.
- W3111736169 hasConcept C180940675 @default.
- W3111736169 hasConcept C201995342 @default.
- W3111736169 hasConcept C202444582 @default.
- W3111736169 hasConcept C2780451532 @default.
- W3111736169 hasConcept C31972630 @default.
- W3111736169 hasConcept C33923547 @default.
- W3111736169 hasConcept C38652104 @default.