Matches in SemOpenAlex for { <https://semopenalex.org/work/W3111819762> ?p ?o ?g. }
- W3111819762 abstract "Osteocalcin (OCN) is an osteoblast-derived hormone with pleiotropic physiological functions. Like many peptide hormones, OCN is subjected to post-translational modifications (PTMs) which control its activity. Here, we uncover O-glycosylation as a novel PTM present on mouse OCN and occurring on a single serine (S8) independently of its carboxylation and endoproteolysis, two other PTMs regulating this hormone. We also show that O-glycosylation increases OCN half-life in plasma ex vivo and in the circulation in vivo. Remarkably, in human OCN (hOCN), the residue corresponding to S8 is a tyrosine (Y12), which is not O-glycosylated. Yet, the Y12S mutation is sufficient to O-glycosylate hOCN and to increase its half-life in plasma compared to wildtype hOCN. These findings reveal an important species difference in OCN regulation, which may explain why serum concentrations of OCN are higher in mouse than in human.Bones provide support and protection for organs in the body. However, over the last 15 years researchers have discovered that bones also release chemicals known as hormones, which can travel to other parts of the body and cause an effect. The cells responsible for making bone, known as osteoblasts, produce a hormone called osteocalcin which communicates with a number of different organs, including the pancreas and brain. When osteocalcin reaches the pancreas, it promotes the release of another hormone called insulin which helps regulate the levels of sugar in the blood. Osteocalcin also travels to other organs such as muscle, where it helps to degrade fats and sugars that can be converted into energy. It also has beneficial effects on the brain, and has been shown to aid memory and reduce depression. Osteocalcin has largely been studied in mice where levels are five to ten times higher than in humans. But it is unclear why this difference exists or how it alters the role of osteocalcin in humans. To answer this question, Al Rifai et al. used a range of experimental techniques to compare the structure and activity of osteocalcin in mice and humans. The experiments showed that mouse osteocalcin has a group of sugars attached to its protein structure, which prevent the hormone from being degraded by an enzyme in the blood. Human osteocalcin has a slightly different protein sequence and is therefore unable to bind to this sugar group. As a result, the osteocalcin molecules in humans are less stable and cannot last as long in the blood. Al Rifai et al. showed that when human osteocalcin was modified so the sugar group could attach, the hormone was able to stick around for much longer and reach higher levels when added to blood in the laboratory. These findings show how osteocalcin differs between human and mice. Understanding this difference is important as the effects of osteocalcin mean this hormone can be used to treat diabetes and brain disorders. Furthermore, the results reveal how the stability of osteocalcin could be improved in humans, which could potentially enhance its therapeutic effect." @default.
- W3111819762 created "2020-12-21" @default.
- W3111819762 creator A5010726804 @default.
- W3111819762 creator A5011171105 @default.
- W3111819762 creator A5018411206 @default.
- W3111819762 creator A5021986892 @default.
- W3111819762 creator A5058714848 @default.
- W3111819762 creator A5061068250 @default.
- W3111819762 creator A5076200713 @default.
- W3111819762 creator A5076864399 @default.
- W3111819762 date "2020-12-07" @default.
- W3111819762 modified "2023-10-03" @default.
- W3111819762 title "The half-life of the bone-derived hormone osteocalcin is regulated through O-glycosylation in mice, but not in humans" @default.
- W3111819762 cites W1569589672 @default.
- W3111819762 cites W1880934458 @default.
- W3111819762 cites W1908063780 @default.
- W3111819762 cites W1970052428 @default.
- W3111819762 cites W1970326193 @default.
- W3111819762 cites W1971400919 @default.
- W3111819762 cites W1979274827 @default.
- W3111819762 cites W1980740451 @default.
- W3111819762 cites W1992382649 @default.
- W3111819762 cites W1996530061 @default.
- W3111819762 cites W2015997553 @default.
- W3111819762 cites W2017975043 @default.
- W3111819762 cites W2028791452 @default.
- W3111819762 cites W2041985227 @default.
- W3111819762 cites W2050756511 @default.
- W3111819762 cites W2055218044 @default.
- W3111819762 cites W2060514084 @default.
- W3111819762 cites W2068873678 @default.
- W3111819762 cites W2070167771 @default.
- W3111819762 cites W2070552573 @default.
- W3111819762 cites W2072918899 @default.
- W3111819762 cites W2076863893 @default.
- W3111819762 cites W2079181256 @default.
- W3111819762 cites W2080776158 @default.
- W3111819762 cites W2084852327 @default.
- W3111819762 cites W2085832579 @default.
- W3111819762 cites W2089749592 @default.
- W3111819762 cites W2093439119 @default.
- W3111819762 cites W2100819581 @default.
- W3111819762 cites W2100832689 @default.
- W3111819762 cites W2106343960 @default.
- W3111819762 cites W2114528551 @default.
- W3111819762 cites W2124634848 @default.
- W3111819762 cites W2137548222 @default.
- W3111819762 cites W2144652798 @default.
- W3111819762 cites W2145706297 @default.
- W3111819762 cites W2146850971 @default.
- W3111819762 cites W2150355474 @default.
- W3111819762 cites W2153134360 @default.
- W3111819762 cites W2154379350 @default.
- W3111819762 cites W2157382059 @default.
- W3111819762 cites W2166625580 @default.
- W3111819762 cites W2209130101 @default.
- W3111819762 cites W2302724997 @default.
- W3111819762 cites W2431992247 @default.
- W3111819762 cites W2479847107 @default.
- W3111819762 cites W2502991882 @default.
- W3111819762 cites W2525458025 @default.
- W3111819762 cites W2529029384 @default.
- W3111819762 cites W2587290015 @default.
- W3111819762 cites W2744690554 @default.
- W3111819762 cites W2751152507 @default.
- W3111819762 cites W2763401475 @default.
- W3111819762 cites W2810242484 @default.
- W3111819762 cites W2891516542 @default.
- W3111819762 cites W2942947160 @default.
- W3111819762 cites W2953347000 @default.
- W3111819762 cites W2973098594 @default.
- W3111819762 cites W2998870715 @default.
- W3111819762 cites W3024959551 @default.
- W3111819762 cites W3052397347 @default.
- W3111819762 cites W3084577727 @default.
- W3111819762 cites W329292291 @default.
- W3111819762 cites W4244412093 @default.
- W3111819762 cites W4251174927 @default.
- W3111819762 doi "https://doi.org/10.7554/elife.61174" @default.
- W3111819762 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7822592" @default.
- W3111819762 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33284103" @default.
- W3111819762 hasPublicationYear "2020" @default.
- W3111819762 type Work @default.
- W3111819762 sameAs 3111819762 @default.
- W3111819762 citedByCount "6" @default.
- W3111819762 countsByYear W31118197622021 @default.
- W3111819762 countsByYear W31118197622022 @default.
- W3111819762 countsByYear W31118197622023 @default.
- W3111819762 crossrefType "journal-article" @default.
- W3111819762 hasAuthorship W3111819762A5010726804 @default.
- W3111819762 hasAuthorship W3111819762A5011171105 @default.
- W3111819762 hasAuthorship W3111819762A5018411206 @default.
- W3111819762 hasAuthorship W3111819762A5021986892 @default.
- W3111819762 hasAuthorship W3111819762A5058714848 @default.
- W3111819762 hasAuthorship W3111819762A5061068250 @default.
- W3111819762 hasAuthorship W3111819762A5076200713 @default.
- W3111819762 hasAuthorship W3111819762A5076864399 @default.
- W3111819762 hasBestOaLocation W31118197621 @default.
- W3111819762 hasConcept C126322002 @default.
- W3111819762 hasConcept C131075544 @default.