Matches in SemOpenAlex for { <https://semopenalex.org/work/W3111879423> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W3111879423 endingPage "159" @default.
- W3111879423 startingPage "145" @default.
- W3111879423 abstract "Medical data held in silos by institutions, makes it challenging to predict new trends and gain insights, as, sharing individual data leaks user privacy and is restricted by law. Meanwhile, the Federated Learning framework [] would solve this problem by facilitating on-device training while preserving privacy. However, the presence of a central server has its inherent problems, including a single point of failure and trust. Moreover, data may be prone to inference attacks. This paper presents a Distributed Net algorithm called DNet to address these issues posing its own set of challenges in terms of high communication latency, performance, and efficiency. Four different networks have been discussed and compared for computation, latency, and precision. Empirical analysis has been performed over Chest X-ray Images and COVID-19 dataset. The theoretical analysis proves our claim that the algorithm has a lower communication latency and provides an upper bound." @default.
- W3111879423 created "2020-12-21" @default.
- W3111879423 creator A5062715029 @default.
- W3111879423 creator A5071224481 @default.
- W3111879423 creator A5079240842 @default.
- W3111879423 date "2020-12-12" @default.
- W3111879423 modified "2023-10-11" @default.
- W3111879423 title "DNet: An Efficient Privacy-Preserving Distributed Learning Framework for Healthcare Systems" @default.
- W3111879423 cites W2053637704 @default.
- W3111879423 cites W2614473624 @default.
- W3111879423 cites W2783522756 @default.
- W3111879423 cites W2924911266 @default.
- W3111879423 cites W3000425044 @default.
- W3111879423 cites W3013730797 @default.
- W3111879423 cites W3018464563 @default.
- W3111879423 cites W3113079445 @default.
- W3111879423 cites W3113149354 @default.
- W3111879423 doi "https://doi.org/10.1007/978-3-030-65621-8_9" @default.
- W3111879423 hasPublicationYear "2020" @default.
- W3111879423 type Work @default.
- W3111879423 sameAs 3111879423 @default.
- W3111879423 citedByCount "2" @default.
- W3111879423 countsByYear W31118794232021 @default.
- W3111879423 countsByYear W31118794232022 @default.
- W3111879423 crossrefType "book-chapter" @default.
- W3111879423 hasAuthorship W3111879423A5062715029 @default.
- W3111879423 hasAuthorship W3111879423A5071224481 @default.
- W3111879423 hasAuthorship W3111879423A5079240842 @default.
- W3111879423 hasConcept C11413529 @default.
- W3111879423 hasConcept C120314980 @default.
- W3111879423 hasConcept C154945302 @default.
- W3111879423 hasConcept C165136773 @default.
- W3111879423 hasConcept C2776214188 @default.
- W3111879423 hasConcept C2992525071 @default.
- W3111879423 hasConcept C31258907 @default.
- W3111879423 hasConcept C41008148 @default.
- W3111879423 hasConcept C45374587 @default.
- W3111879423 hasConcept C76155785 @default.
- W3111879423 hasConcept C82876162 @default.
- W3111879423 hasConcept C93996380 @default.
- W3111879423 hasConceptScore W3111879423C11413529 @default.
- W3111879423 hasConceptScore W3111879423C120314980 @default.
- W3111879423 hasConceptScore W3111879423C154945302 @default.
- W3111879423 hasConceptScore W3111879423C165136773 @default.
- W3111879423 hasConceptScore W3111879423C2776214188 @default.
- W3111879423 hasConceptScore W3111879423C2992525071 @default.
- W3111879423 hasConceptScore W3111879423C31258907 @default.
- W3111879423 hasConceptScore W3111879423C41008148 @default.
- W3111879423 hasConceptScore W3111879423C45374587 @default.
- W3111879423 hasConceptScore W3111879423C76155785 @default.
- W3111879423 hasConceptScore W3111879423C82876162 @default.
- W3111879423 hasConceptScore W3111879423C93996380 @default.
- W3111879423 hasLocation W31118794231 @default.
- W3111879423 hasOpenAccess W3111879423 @default.
- W3111879423 hasPrimaryLocation W31118794231 @default.
- W3111879423 hasRelatedWork W2953538443 @default.
- W3111879423 hasRelatedWork W3008625068 @default.
- W3111879423 hasRelatedWork W3035501883 @default.
- W3111879423 hasRelatedWork W3112310000 @default.
- W3111879423 hasRelatedWork W3128807919 @default.
- W3111879423 hasRelatedWork W3176411177 @default.
- W3111879423 hasRelatedWork W4280588203 @default.
- W3111879423 hasRelatedWork W4285814369 @default.
- W3111879423 hasRelatedWork W4312762663 @default.
- W3111879423 hasRelatedWork W4385749934 @default.
- W3111879423 isParatext "false" @default.
- W3111879423 isRetracted "false" @default.
- W3111879423 magId "3111879423" @default.
- W3111879423 workType "book-chapter" @default.