Matches in SemOpenAlex for { <https://semopenalex.org/work/W3111934523> ?p ?o ?g. }
- W3111934523 endingPage "102353" @default.
- W3111934523 startingPage "102353" @default.
- W3111934523 abstract "The assessment of spasticity under voluntary movement is helpful for the therapist to comprehensively assess the patient's dyskinesia. However, current researches focus on spasticity evaluation based on passive motion. We propose a new method for evaluating spasticity under active motion. Our method is based on the following three steps: (i) Empirical Mode Decomposition (EMD) is used to reduce involuntary movement noise in patients' active movement; (ii) Extract voluntary movement segments of each muscle for feature extract and fusion; (iii) Use machine learning methods to evaluate the degree of spasm in patients. To investigates the feasibility of the method proposed in this paper, An experiment of elbow flexion and extension against gravity is designed, and the electromyographic signal of brachioradialis (BR), biceps brachialis (BB), triceps brachialis (TB) and elbow motion data of 13 subjects were collected. We compared the classification effect of filter method, window length and classifier type. Moreover, we analyze the improvement of classification effect by data fusion. The results showed that the random forest with a window length of 256 ms had the best effect (F1-score = 0.952). Compared with the electromyographic signal (F1-score = 0.756) or motion signal only (F1-score = 0.7053), the method presented in this paper had better classification accuracy. Result demonstrated the feasibility of our method. This study can assist doctors to evaluate patients' spasmodic state under active movement, and has the application potential of wearable devices." @default.
- W3111934523 created "2020-12-21" @default.
- W3111934523 creator A5023541054 @default.
- W3111934523 creator A5025392221 @default.
- W3111934523 creator A5032808401 @default.
- W3111934523 creator A5035992790 @default.
- W3111934523 creator A5063553173 @default.
- W3111934523 creator A5068775552 @default.
- W3111934523 creator A5081081770 @default.
- W3111934523 date "2021-03-01" @default.
- W3111934523 modified "2023-10-16" @default.
- W3111934523 title "A spasticity assessment method for voluntary movement using data fusion and machine learning" @default.
- W3111934523 cites W1985393571 @default.
- W3111934523 cites W2001992768 @default.
- W3111934523 cites W2006086866 @default.
- W3111934523 cites W2026275680 @default.
- W3111934523 cites W2031672236 @default.
- W3111934523 cites W2044628302 @default.
- W3111934523 cites W2050081727 @default.
- W3111934523 cites W2051462644 @default.
- W3111934523 cites W2054153333 @default.
- W3111934523 cites W2102924247 @default.
- W3111934523 cites W2114866171 @default.
- W3111934523 cites W2117708203 @default.
- W3111934523 cites W2125065765 @default.
- W3111934523 cites W2134622564 @default.
- W3111934523 cites W2135651282 @default.
- W3111934523 cites W2171537560 @default.
- W3111934523 cites W2345358362 @default.
- W3111934523 cites W2345888932 @default.
- W3111934523 cites W2410813394 @default.
- W3111934523 cites W2558123505 @default.
- W3111934523 cites W2582812490 @default.
- W3111934523 cites W2586821431 @default.
- W3111934523 cites W2591690220 @default.
- W3111934523 cites W2596563802 @default.
- W3111934523 cites W2604940191 @default.
- W3111934523 cites W2609301443 @default.
- W3111934523 cites W2613644109 @default.
- W3111934523 cites W2613837734 @default.
- W3111934523 cites W2660125847 @default.
- W3111934523 cites W2736795355 @default.
- W3111934523 cites W2742224459 @default.
- W3111934523 cites W2788939421 @default.
- W3111934523 cites W2790788390 @default.
- W3111934523 cites W2803196344 @default.
- W3111934523 cites W2807488261 @default.
- W3111934523 cites W2869144293 @default.
- W3111934523 cites W2913536976 @default.
- W3111934523 cites W2942818522 @default.
- W3111934523 cites W2944239740 @default.
- W3111934523 cites W2952613166 @default.
- W3111934523 cites W2959725268 @default.
- W3111934523 cites W2970610923 @default.
- W3111934523 cites W2982646119 @default.
- W3111934523 cites W2990880458 @default.
- W3111934523 cites W2991505413 @default.
- W3111934523 cites W2995201943 @default.
- W3111934523 cites W3011145085 @default.
- W3111934523 cites W3011727199 @default.
- W3111934523 cites W3012224203 @default.
- W3111934523 cites W3028425753 @default.
- W3111934523 cites W3039549194 @default.
- W3111934523 cites W3708925 @default.
- W3111934523 doi "https://doi.org/10.1016/j.bspc.2020.102353" @default.
- W3111934523 hasPublicationYear "2021" @default.
- W3111934523 type Work @default.
- W3111934523 sameAs 3111934523 @default.
- W3111934523 citedByCount "5" @default.
- W3111934523 countsByYear W31119345232022 @default.
- W3111934523 countsByYear W31119345232023 @default.
- W3111934523 crossrefType "journal-article" @default.
- W3111934523 hasAuthorship W3111934523A5023541054 @default.
- W3111934523 hasAuthorship W3111934523A5025392221 @default.
- W3111934523 hasAuthorship W3111934523A5032808401 @default.
- W3111934523 hasAuthorship W3111934523A5035992790 @default.
- W3111934523 hasAuthorship W3111934523A5063553173 @default.
- W3111934523 hasAuthorship W3111934523A5068775552 @default.
- W3111934523 hasAuthorship W3111934523A5081081770 @default.
- W3111934523 hasBestOaLocation W31119345232 @default.
- W3111934523 hasConcept C107038049 @default.
- W3111934523 hasConcept C119857082 @default.
- W3111934523 hasConcept C138885662 @default.
- W3111934523 hasConcept C154945302 @default.
- W3111934523 hasConcept C158525013 @default.
- W3111934523 hasConcept C2779012798 @default.
- W3111934523 hasConcept C2780226923 @default.
- W3111934523 hasConcept C33954974 @default.
- W3111934523 hasConcept C41008148 @default.
- W3111934523 hasConcept C41895202 @default.
- W3111934523 hasConcept C71924100 @default.
- W3111934523 hasConcept C99508421 @default.
- W3111934523 hasConceptScore W3111934523C107038049 @default.
- W3111934523 hasConceptScore W3111934523C119857082 @default.
- W3111934523 hasConceptScore W3111934523C138885662 @default.
- W3111934523 hasConceptScore W3111934523C154945302 @default.
- W3111934523 hasConceptScore W3111934523C158525013 @default.
- W3111934523 hasConceptScore W3111934523C2779012798 @default.