Matches in SemOpenAlex for { <https://semopenalex.org/work/W3111978503> ?p ?o ?g. }
- W3111978503 endingPage "94" @default.
- W3111978503 startingPage "72" @default.
- W3111978503 abstract "This study focuses on modelling the changes in rainfall patterns in different agro-climatic zones due to climate change through statistical downscaling of large-scale climate variables using machine learning approaches. Potential of three machine learning algorithms, multilayer artificial neural network (MLANN), radial basis function neural network (RBFNN), and least square support vector machine (LS-SVM) have been investigated. The large-scale climate variable are obtained from National Centre for Environmental Prediction (NCEP) reanalysis product and used as predictors for model development. Proposed machine learning models are applied to generate projected time series of rainfall for the period 2021-2050 using the Hadley Centre coupled model (HadCM3) B2 emission scenario data as predictors. An increasing trend in anticipated rainfall is observed during 2021-2050 in all the ACZs of Chhattisgarh State. Among the machine learning models, RBFNN found as more feasible technique for modeling of monthly rainfall in this region." @default.
- W3111978503 created "2020-12-21" @default.
- W3111978503 creator A5042226154 @default.
- W3111978503 creator A5063573474 @default.
- W3111978503 creator A5073147690 @default.
- W3111978503 date "2021-01-01" @default.
- W3111978503 modified "2023-09-26" @default.
- W3111978503 title "Development of Rainfall Prediction Models Using Machine Learning Approaches for Different Agro-Climatic Zones" @default.
- W3111978503 cites W1111723391 @default.
- W3111978503 cites W1596717185 @default.
- W3111978503 cites W1967707747 @default.
- W3111978503 cites W1973022798 @default.
- W3111978503 cites W1980031852 @default.
- W3111978503 cites W1984874631 @default.
- W3111978503 cites W1985213237 @default.
- W3111978503 cites W1988984080 @default.
- W3111978503 cites W2000530404 @default.
- W3111978503 cites W2031520219 @default.
- W3111978503 cites W2033186302 @default.
- W3111978503 cites W2033904036 @default.
- W3111978503 cites W2041387425 @default.
- W3111978503 cites W2044163057 @default.
- W3111978503 cites W2053128000 @default.
- W3111978503 cites W2053909309 @default.
- W3111978503 cites W2065133690 @default.
- W3111978503 cites W2067111793 @default.
- W3111978503 cites W2067760613 @default.
- W3111978503 cites W2068689590 @default.
- W3111978503 cites W2076969359 @default.
- W3111978503 cites W2083309719 @default.
- W3111978503 cites W2084659960 @default.
- W3111978503 cites W2086573699 @default.
- W3111978503 cites W2087886550 @default.
- W3111978503 cites W2091848193 @default.
- W3111978503 cites W2092292306 @default.
- W3111978503 cites W2107179821 @default.
- W3111978503 cites W2118286367 @default.
- W3111978503 cites W2122974524 @default.
- W3111978503 cites W2124450653 @default.
- W3111978503 cites W2125649838 @default.
- W3111978503 cites W2130940149 @default.
- W3111978503 cites W2133209872 @default.
- W3111978503 cites W2143249838 @default.
- W3111978503 cites W2154337975 @default.
- W3111978503 cites W2179261399 @default.
- W3111978503 cites W2181049792 @default.
- W3111978503 cites W2290165709 @default.
- W3111978503 cites W2322046551 @default.
- W3111978503 cites W2326811967 @default.
- W3111978503 cites W2608807750 @default.
- W3111978503 cites W2735652208 @default.
- W3111978503 cites W2807107999 @default.
- W3111978503 cites W2889852608 @default.
- W3111978503 cites W2995378905 @default.
- W3111978503 cites W3009276176 @default.
- W3111978503 cites W3083161613 @default.
- W3111978503 cites W4243866097 @default.
- W3111978503 cites W940966907 @default.
- W3111978503 doi "https://doi.org/10.4018/978-1-7998-6659-6.ch005" @default.
- W3111978503 hasPublicationYear "2021" @default.
- W3111978503 type Work @default.
- W3111978503 sameAs 3111978503 @default.
- W3111978503 citedByCount "3" @default.
- W3111978503 countsByYear W31119785032021 @default.
- W3111978503 countsByYear W31119785032023 @default.
- W3111978503 crossrefType "book-chapter" @default.
- W3111978503 hasAuthorship W3111978503A5042226154 @default.
- W3111978503 hasAuthorship W3111978503A5063573474 @default.
- W3111978503 hasAuthorship W3111978503A5073147690 @default.
- W3111978503 hasConcept C107054158 @default.
- W3111978503 hasConcept C119857082 @default.
- W3111978503 hasConcept C12267149 @default.
- W3111978503 hasConcept C127313418 @default.
- W3111978503 hasConcept C132651083 @default.
- W3111978503 hasConcept C141452985 @default.
- W3111978503 hasConcept C143742823 @default.
- W3111978503 hasConcept C153294291 @default.
- W3111978503 hasConcept C154945302 @default.
- W3111978503 hasConcept C168754636 @default.
- W3111978503 hasConcept C18903297 @default.
- W3111978503 hasConcept C205649164 @default.
- W3111978503 hasConcept C2778755073 @default.
- W3111978503 hasConcept C39432304 @default.
- W3111978503 hasConcept C41008148 @default.
- W3111978503 hasConcept C41156917 @default.
- W3111978503 hasConcept C49204034 @default.
- W3111978503 hasConcept C50644808 @default.
- W3111978503 hasConcept C58640448 @default.
- W3111978503 hasConcept C76934896 @default.
- W3111978503 hasConcept C86803240 @default.
- W3111978503 hasConceptScore W3111978503C107054158 @default.
- W3111978503 hasConceptScore W3111978503C119857082 @default.
- W3111978503 hasConceptScore W3111978503C12267149 @default.
- W3111978503 hasConceptScore W3111978503C127313418 @default.
- W3111978503 hasConceptScore W3111978503C132651083 @default.
- W3111978503 hasConceptScore W3111978503C141452985 @default.
- W3111978503 hasConceptScore W3111978503C143742823 @default.
- W3111978503 hasConceptScore W3111978503C153294291 @default.