Matches in SemOpenAlex for { <https://semopenalex.org/work/W3112016288> ?p ?o ?g. }
- W3112016288 abstract "Abstract Background The breathing disorder obstructive sleep apnea syndrome (OSAS) only occurs while asleep. While polysomnography (PSG) represents the premiere standard for diagnosing OSAS, it is quite costly, complicated to use, and carries a significant delay between testing and diagnosis. Methods This work describes a novel architecture and algorithm designed to efficiently diagnose OSAS via the use of smart phones. In our algorithm, features are extracted from the data, specifically blood oxygen saturation as represented by SpO2. These features are used by a support vector machine (SVM) based strategy to create a classification model. The resultant SVM classification model can then be employed to diagnose OSAS. To allow remote diagnosis, we have combined a simple monitoring system with our algorithm. The system allows physiological data to be obtained from a smart phone, the data to be uploaded to the cloud for processing, and finally population of a diagnostic report sent back to the smart phone in real-time. Results Our initial evaluation of this algorithm utilizing actual patient data finds its sensitivity, accuracy, and specificity to be 87.6%, 90.2%, and 94.1%, respectively. Discussion Our architecture can monitor human physiological readings in real time and give early warning of abnormal physiological parameters. Moreover, after our evaluation, we find 5G technology offers higher bandwidth with lower delays ensuring more effective monitoring. In addition, we evaluate our algorithm utilizing real-world data; the proposed approach has high accuracy, sensitivity, and specific, demonstrating that our approach is very promising. Conclusions Experimental results on the apnea data in University College Dublin (UCD) Database have proven the efficiency and effectiveness of our methodology. This work is a pilot project and still under development. There is no clinical validation and no support. In addition, the Internet of Things (IoT) architecture enables real-time monitoring of human physiological parameters, combined with diagnostic algorithms to provide early warning of abnormal data." @default.
- W3112016288 created "2020-12-21" @default.
- W3112016288 creator A5005864826 @default.
- W3112016288 creator A5017519521 @default.
- W3112016288 creator A5021721710 @default.
- W3112016288 creator A5040281432 @default.
- W3112016288 creator A5042202985 @default.
- W3112016288 creator A5048068730 @default.
- W3112016288 creator A5050997076 @default.
- W3112016288 creator A5066027793 @default.
- W3112016288 creator A5072711528 @default.
- W3112016288 creator A5073685161 @default.
- W3112016288 creator A5074942308 @default.
- W3112016288 creator A5077015043 @default.
- W3112016288 creator A5091074416 @default.
- W3112016288 date "2020-12-01" @default.
- W3112016288 modified "2023-10-16" @default.
- W3112016288 title "Development of a support vector machine learning and smart phone Internet of Things-based architecture for real-time sleep apnea diagnosis" @default.
- W3112016288 cites W1726343988 @default.
- W3112016288 cites W1964824584 @default.
- W3112016288 cites W1966953137 @default.
- W3112016288 cites W1986763501 @default.
- W3112016288 cites W2023335485 @default.
- W3112016288 cites W2062417985 @default.
- W3112016288 cites W2067925997 @default.
- W3112016288 cites W2093265755 @default.
- W3112016288 cites W2104063607 @default.
- W3112016288 cites W2108691203 @default.
- W3112016288 cites W2114046591 @default.
- W3112016288 cites W2124052130 @default.
- W3112016288 cites W2125184489 @default.
- W3112016288 cites W2129525244 @default.
- W3112016288 cites W2131111256 @default.
- W3112016288 cites W2162800060 @default.
- W3112016288 cites W2162920459 @default.
- W3112016288 cites W2187257850 @default.
- W3112016288 cites W2332542316 @default.
- W3112016288 cites W2343482910 @default.
- W3112016288 cites W2434944688 @default.
- W3112016288 cites W2540952922 @default.
- W3112016288 cites W2604806229 @default.
- W3112016288 cites W2612940703 @default.
- W3112016288 cites W2621687283 @default.
- W3112016288 cites W2809265468 @default.
- W3112016288 cites W2839360519 @default.
- W3112016288 cites W2887221547 @default.
- W3112016288 cites W2904846276 @default.
- W3112016288 cites W2915045675 @default.
- W3112016288 cites W2948863707 @default.
- W3112016288 cites W2996359807 @default.
- W3112016288 cites W3004427703 @default.
- W3112016288 doi "https://doi.org/10.1186/s12911-020-01329-1" @default.
- W3112016288 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7739462" @default.
- W3112016288 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33323112" @default.
- W3112016288 hasPublicationYear "2020" @default.
- W3112016288 type Work @default.
- W3112016288 sameAs 3112016288 @default.
- W3112016288 citedByCount "13" @default.
- W3112016288 countsByYear W31120162882021 @default.
- W3112016288 countsByYear W31120162882022 @default.
- W3112016288 countsByYear W31120162882023 @default.
- W3112016288 crossrefType "journal-article" @default.
- W3112016288 hasAuthorship W3112016288A5005864826 @default.
- W3112016288 hasAuthorship W3112016288A5017519521 @default.
- W3112016288 hasAuthorship W3112016288A5021721710 @default.
- W3112016288 hasAuthorship W3112016288A5040281432 @default.
- W3112016288 hasAuthorship W3112016288A5042202985 @default.
- W3112016288 hasAuthorship W3112016288A5048068730 @default.
- W3112016288 hasAuthorship W3112016288A5050997076 @default.
- W3112016288 hasAuthorship W3112016288A5066027793 @default.
- W3112016288 hasAuthorship W3112016288A5072711528 @default.
- W3112016288 hasAuthorship W3112016288A5073685161 @default.
- W3112016288 hasAuthorship W3112016288A5074942308 @default.
- W3112016288 hasAuthorship W3112016288A5077015043 @default.
- W3112016288 hasAuthorship W3112016288A5091074416 @default.
- W3112016288 hasBestOaLocation W31120162881 @default.
- W3112016288 hasConcept C111919701 @default.
- W3112016288 hasConcept C118552586 @default.
- W3112016288 hasConcept C119857082 @default.
- W3112016288 hasConcept C12267149 @default.
- W3112016288 hasConcept C126322002 @default.
- W3112016288 hasConcept C138885662 @default.
- W3112016288 hasConcept C154945302 @default.
- W3112016288 hasConcept C164705383 @default.
- W3112016288 hasConcept C2776006263 @default.
- W3112016288 hasConcept C2777935920 @default.
- W3112016288 hasConcept C2778205975 @default.
- W3112016288 hasConcept C2778707766 @default.
- W3112016288 hasConcept C2781326671 @default.
- W3112016288 hasConcept C2908647359 @default.
- W3112016288 hasConcept C41008148 @default.
- W3112016288 hasConcept C41895202 @default.
- W3112016288 hasConcept C71924100 @default.
- W3112016288 hasConcept C79974875 @default.
- W3112016288 hasConcept C99454951 @default.
- W3112016288 hasConceptScore W3112016288C111919701 @default.
- W3112016288 hasConceptScore W3112016288C118552586 @default.
- W3112016288 hasConceptScore W3112016288C119857082 @default.
- W3112016288 hasConceptScore W3112016288C12267149 @default.
- W3112016288 hasConceptScore W3112016288C126322002 @default.