Matches in SemOpenAlex for { <https://semopenalex.org/work/W3112020612> ?p ?o ?g. }
- W3112020612 abstract "As deep learning technologies advance, increasingly more data is necessary to generate general and robust models for various tasks. In the medical domain, however, large-scale and multi-parties data training and analyses are infeasible due to the privacy and data security concerns. In this paper, we propose an extendable and elastic learning framework to preserve privacy and security while enabling collaborative learning with efficient communication. The proposed framework is named distributed Asynchronized Discriminator Generative Adversarial Networks (AsynDGAN), which consists of a centralized generator and multiple distributed discriminators. The advantages of our proposed framework are five-fold: 1) the central generator could learn the real data distribution from multiple datasets implicitly without sharing the image data; 2) the framework is applicable for single-modality or multi-modality data; 3) the learned generator can be used to synthesize samples for down-stream learning tasks to achieve close-to-real performance as using actual samples collected from multiple data centers; 4) the synthetic samples can also be used to augment data or complete missing modalities for one single data center; 5) the learning process is more efficient and requires lower bandwidth than other distributed deep learning methods." @default.
- W3112020612 created "2020-12-21" @default.
- W3112020612 creator A5037709424 @default.
- W3112020612 creator A5052752576 @default.
- W3112020612 creator A5054636731 @default.
- W3112020612 creator A5064437234 @default.
- W3112020612 creator A5066553616 @default.
- W3112020612 creator A5067552573 @default.
- W3112020612 creator A5077384503 @default.
- W3112020612 creator A5087325874 @default.
- W3112020612 date "2020-12-15" @default.
- W3112020612 modified "2023-09-26" @default.
- W3112020612 title "Multi-modal AsynDGAN: Learn From Distributed Medical Image Data without Sharing Private Information." @default.
- W3112020612 cites W104209573 @default.
- W3112020612 cites W1522301498 @default.
- W3112020612 cites W1568086490 @default.
- W3112020612 cites W158537288 @default.
- W3112020612 cites W1641498739 @default.
- W3112020612 cites W1911361012 @default.
- W3112020612 cites W2027595342 @default.
- W3112020612 cites W2031533839 @default.
- W3112020612 cites W2041069220 @default.
- W3112020612 cites W2046105679 @default.
- W3112020612 cites W2099471712 @default.
- W3112020612 cites W2125389028 @default.
- W3112020612 cites W2161336914 @default.
- W3112020612 cites W2194775991 @default.
- W3112020612 cites W2283463896 @default.
- W3112020612 cites W2339754110 @default.
- W3112020612 cites W2473418344 @default.
- W3112020612 cites W2533800772 @default.
- W3112020612 cites W2535838896 @default.
- W3112020612 cites W2541884796 @default.
- W3112020612 cites W2592929672 @default.
- W3112020612 cites W2593414223 @default.
- W3112020612 cites W2751069891 @default.
- W3112020612 cites W2766934786 @default.
- W3112020612 cites W2770173563 @default.
- W3112020612 cites W2783522756 @default.
- W3112020612 cites W2809410879 @default.
- W3112020612 cites W2891866930 @default.
- W3112020612 cites W2900120080 @default.
- W3112020612 cites W2900298334 @default.
- W3112020612 cites W2902094809 @default.
- W3112020612 cites W2903470619 @default.
- W3112020612 cites W2907760128 @default.
- W3112020612 cites W2910333870 @default.
- W3112020612 cites W2919115771 @default.
- W3112020612 cites W2949117887 @default.
- W3112020612 cites W2962825119 @default.
- W3112020612 cites W2963073614 @default.
- W3112020612 cites W2963125871 @default.
- W3112020612 cites W2963189173 @default.
- W3112020612 cites W2963456518 @default.
- W3112020612 cites W2977527445 @default.
- W3112020612 cites W2979375128 @default.
- W3112020612 cites W3024271340 @default.
- W3112020612 cites W3035014113 @default.
- W3112020612 cites W3123972088 @default.
- W3112020612 cites W66427752 @default.
- W3112020612 hasPublicationYear "2020" @default.
- W3112020612 type Work @default.
- W3112020612 sameAs 3112020612 @default.
- W3112020612 citedByCount "1" @default.
- W3112020612 countsByYear W31120206122021 @default.
- W3112020612 crossrefType "posted-content" @default.
- W3112020612 hasAuthorship W3112020612A5037709424 @default.
- W3112020612 hasAuthorship W3112020612A5052752576 @default.
- W3112020612 hasAuthorship W3112020612A5054636731 @default.
- W3112020612 hasAuthorship W3112020612A5064437234 @default.
- W3112020612 hasAuthorship W3112020612A5066553616 @default.
- W3112020612 hasAuthorship W3112020612A5067552573 @default.
- W3112020612 hasAuthorship W3112020612A5077384503 @default.
- W3112020612 hasAuthorship W3112020612A5087325874 @default.
- W3112020612 hasConcept C108583219 @default.
- W3112020612 hasConcept C111919701 @default.
- W3112020612 hasConcept C119857082 @default.
- W3112020612 hasConcept C120314980 @default.
- W3112020612 hasConcept C121332964 @default.
- W3112020612 hasConcept C124101348 @default.
- W3112020612 hasConcept C142724271 @default.
- W3112020612 hasConcept C144024400 @default.
- W3112020612 hasConcept C154945302 @default.
- W3112020612 hasConcept C163258240 @default.
- W3112020612 hasConcept C204787440 @default.
- W3112020612 hasConcept C2779803651 @default.
- W3112020612 hasConcept C2779903281 @default.
- W3112020612 hasConcept C2779965156 @default.
- W3112020612 hasConcept C2780226545 @default.
- W3112020612 hasConcept C2780992000 @default.
- W3112020612 hasConcept C36289849 @default.
- W3112020612 hasConcept C37736160 @default.
- W3112020612 hasConcept C41008148 @default.
- W3112020612 hasConcept C62520636 @default.
- W3112020612 hasConcept C71924100 @default.
- W3112020612 hasConcept C76155785 @default.
- W3112020612 hasConcept C94915269 @default.
- W3112020612 hasConcept C98045186 @default.
- W3112020612 hasConceptScore W3112020612C108583219 @default.
- W3112020612 hasConceptScore W3112020612C111919701 @default.