Matches in SemOpenAlex for { <https://semopenalex.org/work/W3112093669> ?p ?o ?g. }
- W3112093669 endingPage "1383" @default.
- W3112093669 startingPage "1370" @default.
- W3112093669 abstract "Exploiting spatial patterns in large-scale multiple testing promises to improve both power and interpretability of false discovery rate (FDR) analyses. This article develops a new class of locally adaptive weighting and screening (LAWS) rules that directly incorporates useful local patterns into inference. The idea involves constructing robust and structure-adaptive weights according to the estimated local sparsity levels. LAWS provides a unified framework for a broad range of spatial problems and is fully data-driven. It is shown that LAWS controls the FDR asymptotically under mild conditions on dependence. The finite sample performance is investigated using simulated data, which demonstrates that LAWS controls the FDR and outperforms existing methods in power. The efficiency gain is substantial in many settings. We further illustrate the merits of LAWS through applications to the analysis of two-dimensional and three-dimensional images. Supplementary materials for this article are available online." @default.
- W3112093669 created "2020-12-21" @default.
- W3112093669 creator A5080427402 @default.
- W3112093669 creator A5084048864 @default.
- W3112093669 creator A5091812052 @default.
- W3112093669 date "2021-01-28" @default.
- W3112093669 modified "2023-09-29" @default.
- W3112093669 title "LAWS: A Locally Adaptive Weighting and Screening Approach to Spatial Multiple Testing" @default.
- W3112093669 cites W1532814032 @default.
- W3112093669 cites W1596515083 @default.
- W3112093669 cites W1635341812 @default.
- W3112093669 cites W1844989601 @default.
- W3112093669 cites W1985785080 @default.
- W3112093669 cites W1986589809 @default.
- W3112093669 cites W2002234191 @default.
- W3112093669 cites W2006145698 @default.
- W3112093669 cites W2010348162 @default.
- W3112093669 cites W2013981562 @default.
- W3112093669 cites W2026906073 @default.
- W3112093669 cites W2049113394 @default.
- W3112093669 cites W2073622765 @default.
- W3112093669 cites W2074089196 @default.
- W3112093669 cites W2074248125 @default.
- W3112093669 cites W2075817987 @default.
- W3112093669 cites W2081499052 @default.
- W3112093669 cites W2105381419 @default.
- W3112093669 cites W2106773151 @default.
- W3112093669 cites W2106984728 @default.
- W3112093669 cites W2110065044 @default.
- W3112093669 cites W2134696273 @default.
- W3112093669 cites W2134697512 @default.
- W3112093669 cites W2143079975 @default.
- W3112093669 cites W2147325075 @default.
- W3112093669 cites W2164755841 @default.
- W3112093669 cites W2170264612 @default.
- W3112093669 cites W2201499402 @default.
- W3112093669 cites W2246688286 @default.
- W3112093669 cites W2278602278 @default.
- W3112093669 cites W2418024629 @default.
- W3112093669 cites W2461658781 @default.
- W3112093669 cites W2518437604 @default.
- W3112093669 cites W2524505373 @default.
- W3112093669 cites W2555558420 @default.
- W3112093669 cites W2921733000 @default.
- W3112093669 cites W2943765507 @default.
- W3112093669 cites W2951049961 @default.
- W3112093669 cites W2962981429 @default.
- W3112093669 cites W2963642566 @default.
- W3112093669 cites W2963892091 @default.
- W3112093669 cites W3098951486 @default.
- W3112093669 cites W3100378224 @default.
- W3112093669 cites W3100641699 @default.
- W3112093669 cites W3123277272 @default.
- W3112093669 doi "https://doi.org/10.1080/01621459.2020.1859379" @default.
- W3112093669 hasPublicationYear "2021" @default.
- W3112093669 type Work @default.
- W3112093669 sameAs 3112093669 @default.
- W3112093669 citedByCount "9" @default.
- W3112093669 countsByYear W31120936692021 @default.
- W3112093669 countsByYear W31120936692022 @default.
- W3112093669 countsByYear W31120936692023 @default.
- W3112093669 crossrefType "journal-article" @default.
- W3112093669 hasAuthorship W3112093669A5080427402 @default.
- W3112093669 hasAuthorship W3112093669A5084048864 @default.
- W3112093669 hasAuthorship W3112093669A5091812052 @default.
- W3112093669 hasConcept C104317684 @default.
- W3112093669 hasConcept C105795698 @default.
- W3112093669 hasConcept C11413529 @default.
- W3112093669 hasConcept C124101348 @default.
- W3112093669 hasConcept C126255220 @default.
- W3112093669 hasConcept C126838900 @default.
- W3112093669 hasConcept C154945302 @default.
- W3112093669 hasConcept C159985019 @default.
- W3112093669 hasConcept C17744445 @default.
- W3112093669 hasConcept C183115368 @default.
- W3112093669 hasConcept C183905921 @default.
- W3112093669 hasConcept C185592680 @default.
- W3112093669 hasConcept C192562407 @default.
- W3112093669 hasConcept C193244246 @default.
- W3112093669 hasConcept C199539241 @default.
- W3112093669 hasConcept C204323151 @default.
- W3112093669 hasConcept C2776214188 @default.
- W3112093669 hasConcept C2781067378 @default.
- W3112093669 hasConcept C33923547 @default.
- W3112093669 hasConcept C41008148 @default.
- W3112093669 hasConcept C55493867 @default.
- W3112093669 hasConcept C71924100 @default.
- W3112093669 hasConceptScore W3112093669C104317684 @default.
- W3112093669 hasConceptScore W3112093669C105795698 @default.
- W3112093669 hasConceptScore W3112093669C11413529 @default.
- W3112093669 hasConceptScore W3112093669C124101348 @default.
- W3112093669 hasConceptScore W3112093669C126255220 @default.
- W3112093669 hasConceptScore W3112093669C126838900 @default.
- W3112093669 hasConceptScore W3112093669C154945302 @default.
- W3112093669 hasConceptScore W3112093669C159985019 @default.
- W3112093669 hasConceptScore W3112093669C17744445 @default.
- W3112093669 hasConceptScore W3112093669C183115368 @default.
- W3112093669 hasConceptScore W3112093669C183905921 @default.