Matches in SemOpenAlex for { <https://semopenalex.org/work/W3112118199> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3112118199 endingPage "128" @default.
- W3112118199 startingPage "113" @default.
- W3112118199 abstract "In this paper, an approach for classifying gastrointestinal (GI) diseases from endoscopic images is proposed. The proposed approach is built using a convolutional neural network (CNN) with batch normalization (BN) and an exponential linear unit (ELU) as the activation function. The proposed approach consists of eight layers (six convolutional and two fully connected layers) and is used to identify eight types of GI diseases in version two of the Kvasir dataset. The proposed approach was compared with other CNN architectures (VGG16, VGG19, and Inception-v3) using five elements (number of convolutional layers, number of total parameters of the convolutional layers, number of epochs, validation accuracy and test accuracy). The proposed approach achieved good results compared to the compared architectures. It achieved a validation accuracy of 88%, which is superior to other architectures and a test accuracy of 87%, which outperforms the Inception-v3 architecture. Therefore, the proposed approach has less trained images and less computational complexity in the training phase." @default.
- W3112118199 created "2020-12-21" @default.
- W3112118199 creator A5024568550 @default.
- W3112118199 creator A5037470010 @default.
- W3112118199 creator A5076125763 @default.
- W3112118199 creator A5085432173 @default.
- W3112118199 date "2020-12-15" @default.
- W3112118199 modified "2023-09-24" @default.
- W3112118199 title "Convolutional Neural Network with Batch Normalization for Classification of Endoscopic Gastrointestinal Diseases" @default.
- W3112118199 cites W1034159276 @default.
- W3112118199 cites W1263185392 @default.
- W3112118199 cites W1884191083 @default.
- W3112118199 cites W1972446995 @default.
- W3112118199 cites W2067794541 @default.
- W3112118199 cites W2183341477 @default.
- W3112118199 cites W2194775991 @default.
- W3112118199 cites W2257997285 @default.
- W3112118199 cites W2273897973 @default.
- W3112118199 cites W2285788670 @default.
- W3112118199 cites W2330219538 @default.
- W3112118199 cites W2562947328 @default.
- W3112118199 cites W2601707599 @default.
- W3112118199 cites W2608093348 @default.
- W3112118199 cites W2623808523 @default.
- W3112118199 cites W2733343268 @default.
- W3112118199 cites W2787911558 @default.
- W3112118199 cites W2789876780 @default.
- W3112118199 cites W2790729248 @default.
- W3112118199 cites W2809527961 @default.
- W3112118199 cites W2963828468 @default.
- W3112118199 cites W2963874375 @default.
- W3112118199 cites W2978977210 @default.
- W3112118199 cites W2983575492 @default.
- W3112118199 cites W3003663164 @default.
- W3112118199 cites W3007348640 @default.
- W3112118199 doi "https://doi.org/10.1007/978-3-030-59338-4_7" @default.
- W3112118199 hasPublicationYear "2020" @default.
- W3112118199 type Work @default.
- W3112118199 sameAs 3112118199 @default.
- W3112118199 citedByCount "2" @default.
- W3112118199 countsByYear W31121181992022 @default.
- W3112118199 crossrefType "book-chapter" @default.
- W3112118199 hasAuthorship W3112118199A5024568550 @default.
- W3112118199 hasAuthorship W3112118199A5037470010 @default.
- W3112118199 hasAuthorship W3112118199A5076125763 @default.
- W3112118199 hasAuthorship W3112118199A5085432173 @default.
- W3112118199 hasConcept C136886441 @default.
- W3112118199 hasConcept C144024400 @default.
- W3112118199 hasConcept C153180895 @default.
- W3112118199 hasConcept C154945302 @default.
- W3112118199 hasConcept C19165224 @default.
- W3112118199 hasConcept C41008148 @default.
- W3112118199 hasConcept C81363708 @default.
- W3112118199 hasConceptScore W3112118199C136886441 @default.
- W3112118199 hasConceptScore W3112118199C144024400 @default.
- W3112118199 hasConceptScore W3112118199C153180895 @default.
- W3112118199 hasConceptScore W3112118199C154945302 @default.
- W3112118199 hasConceptScore W3112118199C19165224 @default.
- W3112118199 hasConceptScore W3112118199C41008148 @default.
- W3112118199 hasConceptScore W3112118199C81363708 @default.
- W3112118199 hasLocation W31121181991 @default.
- W3112118199 hasOpenAccess W3112118199 @default.
- W3112118199 hasPrimaryLocation W31121181991 @default.
- W3112118199 hasRelatedWork W2016839265 @default.
- W3112118199 hasRelatedWork W2175746458 @default.
- W3112118199 hasRelatedWork W2613736958 @default.
- W3112118199 hasRelatedWork W2732542196 @default.
- W3112118199 hasRelatedWork W2738221750 @default.
- W3112118199 hasRelatedWork W2760085659 @default.
- W3112118199 hasRelatedWork W2883200793 @default.
- W3112118199 hasRelatedWork W2912288872 @default.
- W3112118199 hasRelatedWork W3012978760 @default.
- W3112118199 hasRelatedWork W3093612317 @default.
- W3112118199 isParatext "false" @default.
- W3112118199 isRetracted "false" @default.
- W3112118199 magId "3112118199" @default.
- W3112118199 workType "book-chapter" @default.